на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Исследование движения центра масс межпланетных космических аппаратов

После выключения двигателя при третьем запуске происходит отделение МКА

от РБ «Бриз».

Кинематические параметры в гринвичской СК, фиксированной на момент старта

РН и оскулирующие элементы орбиты на момент отделения от РБ:

|Параметр |Значение |

|t, сек |4946,5 |

|X, м |4638800 |

|Y, м |5120280 |

|Z, м |689680 |

|Vx, м/с |241,23 |

|Vy, м/с |-1233 |

|Vz, м/с |7473,5 |

|(, ( |28,1 |

|T, c |5761,67 |

|e |0,0009 |

|i, ( |97,595 |

|Ra, м |6940000 |

|Rп, м |6952000 |

2.3. ИСХОДНЫЕ ДАННЫЕ И ЦЕЛИ РАБОТЫ

2.3.1. ИСХОДНЫЕ ДАННЫЕ

Номинальная орбита, необходимая для выполнения задач МКА, имеет следующие

параметры:

- круговая, e = 0.

- солнечно-синхронная, скорость прецессии линии узлов орбиты ( равна

скорости обращения Солнца относительно Земли

( = 2( / 365,2422 = 0,0172 рад/сут = 0,98 (/сут.

- изомаршрутная, за сутки МКА совершает целое количество оборотов (n =

15).

Это обеспечивает прохождение МКА над одними и теми же районами в одно и

тоже местное время.

- период Т = 5765 с.

- высота орбиты Н = 574 км.

- наклонение орбиты i = 97,6(.

- географическая долгота восходящего узла орбиты (э = 28,1(.

Долгота восходящего узла в геоцентрической экваториальной (абсолютной)

системе координат OXYZ определяется как разность

(э - s0,

где s0 - часовой угол, отсчитывающийся от гринвичского меридиана до оси

X, направленной в точку весеннего равноденствия.

Часовой угол зависит от даты старта и выбирается из астрономического

ежегодника. В данной задаче для моделирования выбран часовой угол = 0.

Следовательно долгота восходящего узла орбиты ( = (э = 28,1(.

Исходя из ТЗ, начальная точка выведения имеет следующие координаты в

гринвичской системе координат, фиксированной на момент старта РН:

|Параметр |Значение |

|t, сек |4946.5 |

|X, м |4638800 |

|Y, м |5120280 |

|Z, м |689506,95 |

|Vx, м/с |241,23 |

|Vy, м/с |-1233 |

|Vz, м/с |7472,65 |

Элементы орбиты:

|(, ( |28,1 |

|T, c |5761,67 |

|e |0,0009 |

|i, ( |97,595 |

|Ra, м |6940000 |

|Rп, м |6952000 |

Кинематические параметры в геоцентрической экваториальной системе

координат:

|t, сек |4946.5 |

|X, м |6137262,9 |

|Y, м |3171846,1 |

|Z, м |689506,95 |

|Vx, м/с |-201,3 |

|Vy, м/с |-1247,03 |

|Vz, м/с |7472,65 |

|(, ( |28,1 |

Точность выведения:

- предельная ошибка по координате (3() - 7 км.

- предельная ошибка по скорости (3() - 5 м/с.

Пересчитав ошибку по координате на ошибку по периоду выведения орбиты

получим предельную ошибку по периоду (T - 10 сек.

Корреляционная матрица ошибок выведения на момент выведения составляет:

[pic]

Члены, стоящие на главной диагонали представляют собой квадраты

предельных ошибок - (3()2.

K11 = K22 = K33 = (3()2 = 72 = 49 км.

K44 = K55 = K66 = (3()2 = 52 = 25 м/с.

Остальные члены представляют собой вторые смешанные моменты Kij = Kji =

rij(i(j или Kij = Kji = rjj(3(i)(3(j), где rjj - коэффициенты связи величин

i и j. В данном случае вторые смешанные моменты Kij = Kji = 0.

Кинематические параметры в геоцентрической экваториальной системе

координат на момент выведения с учетом ошибок выведения:

|t, сек |4946.5 |

|X, м |6144262,9 |

|Y, м |3178846,1 |

|Z, м |696506,95 |

|Vx, м/с |-206,3 |

|Vy, м/с |-1252,03 |

|Vz, м/с |7477,65 |

|(, ( |28,1 |

Параметры орбиты с учетом ошибок выведения:

|(, ( |28,13 |

|T, c |5795,7 |

|(, ( |28,13 |

|p, км |6973,5 |

|а, км |6973,6 |

|e |0,00314 |

|i, ( |97,637 |

2.3.2. ЦЕЛИ РАБОТЫ

1) Исследование и моделирование движения ЦМ МКА при воздействии на КА

возмущающих ускорений.

2) Разработка алгоритмов проведения коррекции траектории МКА,

моделирования процесса, и расчет потребного топлива для проведения

коррекции траектории.

3) Исследование динамики системы коррекции траектории при стабилизации

углового положения в процессе проведения коррекции траектории МКА.

2.4. МОДЕЛИРОВАНИЕ ДВИЖЕНИЯ ЦЕНТРА МАСС МКА

2.4.1.УРАВНЕНИЕ ДВИЖЕНИЯ КА

Рассмотрим невозмущенное движение материальных точек М и m в некоторой

инерциальной системе координат. Движение совершается под действием силы

притяжения Fz. Сила Fz для материальной точки m определяется формулой:

[pic],

где ( - постоянная притяжения,

ro - единичный вектор, направленный от М к m,

[pic],

где [pic]- радиус-вектор, проведенный из т.М до т.m.

r - относительное расстояние от М до m.

На точку М действует сила Fz, равная по величине и направленная в

противоположную сторону.

На основе второго закона Ньютона уравнения движения материальных точек М

и m имеют вид:

[pic](1), [pic] (2)

или

[pic](3), [pic] (4)

где p1 - радиус-вектор, проведенный из начала инерциальной системы

координат в точку m.

p2 - радиус-вектор, проведенный из начала инерциальной системы координат

в точку М.

[pic].

Вычитая из уравнения (3) уравнение (4), получим уравнение движения

материальной точки m относительно притягивающего центра М:

[pic][pic]

Так как m>r, то в первом слагаемом можно пренебречь r. Следовательно

[pic]

| rc - r| = (((xc-x)2+(yc-y)2+(zc-z)2)

где xc, yc, zc - проекции радиуса-вектора Солнца на оси абсолютной

системы координат.

Моделирование движения Солнца проводилось следующим образом: за некоторый

промежуток времени t Солнце относительно Земли сместится на угол ( = (н +

(ct,

где (н = ( + (90 - () - начальное положение Солнца в эклиптической

системе координат.

( = 28,1( - долгота восходящего узла первого витка КА.

( = 30( - угол между восходящим узлом орбиты КА и терминатором.

(c - угловая скорость Солнца относительно Земли.

(c = 2(/T = 2(/365,2422(24(3600 = 1,991(10-7 рад/c = 1,14(10-5 (/c

Таким образом, в эклиптической системе координат проекции составляют:

xce = rccos(

yce = rcsin(

zce = 0

rc = 1,496(1011 м (1 астрономическая единица) - расстояние от Земли до

Солнца

Плоскость эклиптики наклонена к плоскости экватора на угол ( = 23,45(,

проекции rc на оси абсолютной системы координат можно найти как

xc = xce = rccos(

yce = ycecos( = rccos(cos(

zce = rcsin(sin(

Таким образом, проекции возмущающего ускорения на оси абсолютной системы

координат:

axc = - (cx/((((xc-x)2+(yc-y)2+(zc-z)2))3

ayc = - (cy/((((xc-x)2+(yc-y)2+(zc-z)2))3

azc = - (cz/((((xc-x)2+(yc-y)2+(zc-z)2))3

С учетом солнечного давления

axc = - ((c-((c)x/((((xc-x)2+(yc-y)2+(zc-z)2))3

ayc = - ((c-((c)y/((((xc-x)2+(yc-y)2+(zc-z)2))3

azc = - ((c-((c)z/((((xc-x)2+(yc-y)2+(zc-z)2))3

5) Возмущающее ускорение, возникающее из-за влияния Луны.

Уравнение движения КА в абсолютной системе координат OXYZ относительно

Земли при воздействии Луны:

[pic]

где (л = 4,902(106 м3/c2- постоянная тяготения Луны.

rл - радиус-вектор от Земли до Луны.

Таким образом, возмущающее ускорение, возникающее из-за влияния Луны:

[pic]

Так как rл>>r, то в первом слагаемом можно пренебречь r. Следовательно

[pic]

|rл - r| = (((xл-x)2+(yл-y)2+(zл-z)2)

где xл, yл, zл - проекции радиуса-вектора Луны на оси абсолютной системы

координат.

Движение Луны учитывается следующим образом: положение Луны в каждый

момент времени рассчитывается в соответствии с данными астрономического

ежегодника. Все данные заносятся в массив, и далее этот массив считается

программой моделирования движения КА. В первом приближении принимается:

- орбита Луны - круговая.

- угол наклона плоскости орбиты Луны к плоскости эклиптики i = 5,15(.

- период обращения линии пересечения плоскостей лунной орбиты и эклиптики

(по ходу часовой стрелки, если смотреть с северного полюса) = 18,6 года.

Угол между плоскостями экватора Земли и орбиты Луны можно найти по

формуле

cos((л) = cos(()cos(i) - sin(()sin(i)cos((л)

где (л - долгота восходящего узла лунной орбиты, отсчитывается от

направления на точку весеннего равноденствия.

( - угол между плоскостями эклиптики и экватора Земли.

Величина (л колеблется с периодом 18,6 лет между минимумом при (л = ( - i

= 18(18’ и максимумом при (л = ( + i = 28(36’ при ( = 0.

Долгота восходящего узла лунной орбиты (л изменяется с течением времени t

на величину (л = t(360/18,6(365,2422(24(3600.

Положение Луны на орбите во время t определяется углом

( л = t(360/27,32(24(3600.

По формулам перехода найдем проекции вектора положения Луны на оси

абсолютной системы координат:

xл = rл(cos(лcos(л - cos(лsin(лsin(л)

yл = rл(cos(лsin(л + cos(лsin(лcos(л)

zл = rлsin(лsin(л

rл = 3,844(108 м - среднее расстояние от Земли до Луны

Таким образом, проекции возмущающего ускорения на оси абсолютной системы

координат:

axл = - (лx/((((xл!-x)2+(yл-y)2+(zл-z)2))3

ayл = - (лy/((((xл!-x)2+(yл-y)2+(zл-z)2))3

azл = - (лz/((((xл!-x)2+(yл-y)2+(zл-z)2))3

Уравнения возмущенного движения при действии корректирующего ускорения

имеют вид:

[pic]

или

d2x/dt2 = - ((z/r2)x + axu + axa + axc + axл + axк

d2y/dt2 = - ((z/r2)y + ayu + aya + ayc + ayл + ayк

d2z/dt2 = - ((z/r2)z + azu + aza + azc + azл + azк

2.4.3. РАСЧЕТ ПАРАМЕТРОВ ТЕКУЩЕЙ ОРБИТЫ КА

Полученная система уравнений движения ЦМ КА интегрируется методом Рунге-

Кутта 5-го порядка с переменным шагом. Начальные условия x0, y0, z0, Vx0,

Vy0, Vz0 - в абсолютной системе координат, соответствуют начальной точке

вывода при учете ошибок выведения. После интегрирования мы получаем вектор

состояния КА (x, y, z, Vx, Vy, Vz) в любой момент времени.

По вектору состояния можно рассчитать параметры орбиты. соответствующие

этому вектору состояния.

а) Фокальный параметр - р.

р = C2/(z, где С - интеграл площадей.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.