на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Курсовая: Интеграл Лебега

Курсовая: Интеграл Лебега

ВОЛОГОДСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ

ФИЗИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА МАТЕМАТИЧЕСКОГО АНАЛИЗА

Курсовая работа на тему:

«Интеграл Лебега»

Выполнила: студентка 3мфА

Сенченко Ю. В.

Проверила: Панфилова Т. Л.

Вологда

2000

Содержание.

1. Введение.

1.1.Простые функции.

1.2.ИнтегралЛебега от простых функций.

2. Определение интнгралаЛебега.

3. Основные свойства интеграла.

4. Предельный переход под знаком интеграла.

5. Сравнение интегралов Римана и Лебега.

6. Примеры.

7. Литература.

1. Введение

Понятие интеграла Римана, известное из элементарного курса анализа, применимо

лишь к таким функциям, которые или непрерывны или имеют «не слишком много»

точек разрыва. Для измеримых функций, которые могут быть разрывны всюду, где

они определены (или же вообще могут быть заданы на аб­страктном множестве,

так что для них понятие непрерывности просто не имеет смысла), римановская

конструкция интеграла становится непригодной. Вместе с тем для таких функций

имеется весьма совершенное и гибкое понятие интеграла, вве­денное Лебегом.

Основная идея построения интеграла Лебега состоит в том, что здесь, в отличие от

интеграла Римана, точки х группируют­ся не по признаку их близости на

оси х, а по признаку близости значений функции в этих точках. Это сразу

же позволяет рас­пространить понятие интеграла на весьма широкий класс функций.

Кроме того, интеграл Лебега определяется совершенно оди­наково для функций,

заданных на любых пространствах с ме­рой, в то время как интеграл Римана

вводится сначала для функций одного переменного, а затем уже с

соответствующими изменениями переносится на случай нескольких переменных. Для

функций же на абстрактных пространствах с мерой инте­грал Римана вообще не

имеет смысла.

Всюду, где не оговорено противное, будет рассматриваться некоторая полная

s-аддитивная мера m, определенная на s-алгебре множеств с единицей X.

Все рассматриваемые множества А Ì Х будут предполагаться

измеримыми, а функции f(x) - определенными для xÎ Х и

измеримыми.

1.1. Простые функции.

Определение 1. Функция f(x), определенная на некото­ром пространстве

Х с заданной на нем мерой, называется про­стой, если она измерима и

принимает не более, чем счетное число значений.

Структура простых функций характеризуется следующей теоремой.

Теорема 1. Функция f(x), принимающая не более чем счет­ное

число различных значений

y1, y2, . , yn, . ,

измерима в том и только том случае, если все множества

An={x : ¦(x)=yn}

измеримы.

Доказательство. Необходимость условия ясна, так как каждое A

n есть прообраз одноточечного множества {yn}, а

вся­кое одноточечное множество является борелевским. Достаточ­ность следует из

того, что в условиях теоремы прообраз f-1(B) любого

борелевского множества есть объединение Курсовая: Интеграл Лебега

не более чем счетного числа измеримых множеств An, т. е.

измерим.

Использование простых функций в построении интеграла Ле­бега будет основано

на следующей теореме.

Теорема 2. Для измеримости функции f(x) необходимо и

достаточно, чтобы она могла быть представлена в виде предела равномерно

сходящейся последовательности простых измеримых функций.

Доказательство. Для доказательства необходимости рас­смотрим

произвольную измеримую функцию f(x) и положим fn(х)=m/п,

если т/пКурсовая: Интеграл Лебега

f(x)<(m+1)/n (здесь т - целые, а п - целые

положительные). Ясно, что функции fn(x) простые; при п®Курсовая: Интеграл Лебега

они равномерно сходятся к f(x), так как çf(x)- fn

(x)ç£1/n.

1.2.Интеграл Лебега для простых функций.

Мы введем поня­тие интеграла Лебега сначала для функций, названных выше

простыми, т. е. для измеримых функций, принимающих конечное или счетное число

значений.

Пусть f—некоторая простая функция, принимающая зна­чения

y1, y2, . , yn, . ; yiКурсовая: Интеграл Лебега yj при iКурсовая: Интеграл Лебега j,

и пусть А — некоторое измеримое подмножество X.

Естественно определить интеграл от функции f по множе­ству А равенством

Курсовая: Интеграл Лебега =Курсовая: Интеграл Лебега

, где An={x: xКурсовая: Интеграл Лебега

A, f(x)=yn},

(1) если ряд справа сходится. Мы приходим к следующему опре­делению (в котором

по понятным причинам заранее постули­руется абсолютная сходимость ряда).

Определение 2. Простая функция f называется интегри­руемой или

суммируемой (по мере m) на множестве A, если ряд (1) абсолютно сходится.

Если f интегрируема, то сумма ряда (1) называется интегралом от

f по множеству А.

В этом определении предполагается, что все уn различны.

Можно, однако, представить значение интеграла от простой функции в виде суммы

произведений вида ckm(Bk) и не предпо­лагая, что все

ck различны. Это позволяет сделать следующая лемма.

Лемма. Пусть А=Курсовая: Интеграл Лебега

, BiКурсовая: Интеграл Лебега B

j=Æ при iКурсовая: Интеграл Лебега

j и пусть на каждом множестве Bk функция f принимает только одно

значе­ние ck; тогда

Курсовая: Интеграл Лебега =Курсовая: Интеграл Лебега

,

(2) причем функция f интегрируема на А в том и только том слу­чае, когда ряд

(2) абсолютно сходится.

Доказательство. Легко видеть, что каждое множество

Аn={х: хÎА, f(x)=yn}

является объединением тех Bk, для которых сk=yn. Поэтому

Курсовая: Интеграл Лебега =Курсовая: Интеграл Лебега Курсовая: Интеграл Лебега =Курсовая: Интеграл Лебега .

Так как мера неотрицательна, то

Курсовая: Интеграл Лебега =Курсовая: Интеграл Лебега =Курсовая: Интеграл Лебега ,

т. е. ряды Курсовая: Интеграл Лебега и Курсовая: Интеграл Лебега абсолютно сходятся или расходятся одновременно. Лемма доказана.

Установим некоторые свойства интеграла Лебега от простых функций

A) Курсовая: Интеграл Лебега =Курсовая: Интеграл Лебега +Курсовая: Интеграл Лебега ,

причем из существования интегралов в правой части равенства следует

существование интеграла в левой.

Для доказательства предположим, что f принимает значения fi

на множествах Fi Ì A, a g — значения g

j на множествах Gj Ì A, так что

J1=Курсовая: Интеграл Лебега =Курсовая: Интеграл Лебега

,

(3)

J2=Курсовая: Интеграл Лебега =Курсовая: Интеграл Лебега

.

(4)

Тогда в силу леммы

J=Курсовая: Интеграл Лебега =Курсовая: Интеграл Лебега ; (5)

так что из абсолютной сходимости рядов (3) и (4) следует и абсолютная

сходимость ряда (5); при этом

J=J1+J2.

Б) Для любого постоянного k

Курсовая: Интеграл Лебега =kКурсовая: Интеграл Лебега ,

причем из существования интеграла в правой части следует су­ществование

интеграла в левой части. (Проверяется непосред­ственно.)

В) Ограниченная на множестве А простая функция f инте­грируема на А, причем,

если ½f(x)½£ M на A, то

½Курсовая: Интеграл Лебега ½£ Mm(A).

(Проверяется непосредственно.)

2. Определение интеграла Лебега

Классическое определение интеграла, данное О. Коши и разви­тое Б. Риманом,

состоит, как известно, в следующем: рассматри­вается конечная функция f(x),

заданная на сегменте [a, b]; этот сегмент разбивается на части точками

x0 = a < x1 < x2 < ¼ < xn = b

в каждой части [xk, xk+1] выбирается точка xk и составляется риманова сумма

s = Курсовая: Интеграл Лебега .

Если сумма s при стремлении к нулю числа

l = max(xk+1 – xk).

стремится к конечному пределу I, не зависящему ни от способа дробления

[a, b], ни от выбора точек xk, то этот предел I

назы­вается интегралом Римана функции f(x) и обозначается символом

Курсовая: Интеграл Лебега .

Иногда, желая подчеркнуть, что речь идет именно о римановом интеграле, пишут

(R)Курсовая: Интеграл Лебега .

Страницы: 1, 2, 3, 4, 5, 6



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.