на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Курсовая работа: Глубокие длиннопериодные землетрясения под Ключевским вулканом, Камчатка

Все это позволяет предположить иную генетическую природу ГДП землетрясений, отличную от природы обычных ВТ землетрясений. Об этом косвенно свидетельствует идентичность формы записей ГДП землетрясений в отличие от землетрясений других слоев, что было отмечено и для длиннопериодных землетрясений при извержении вулкана Пинатубо [41].

Обсудим далее гипотезу 2, впервые предложенную в работе [34], в рамках которой неплохо объясняются перечисленные выше особенности ГДП землетрясений (пункты 1-6) в слое 4 в Центральной зоне под Ключевским вулканом. В этой модели ДП землетрясения генерируются при колебаниях стенок заполненных магмой трещин в результате импульсов давления в магме; волны давления в магме, как предполагают авторы [31,32,34], возникают при движении магмы со сверхзвуковой скоростью. Последнее предположение, по нашему мнению, является самым уязвимым звеном модели, так как это означает движение потока магмы со скоростью более 1 км/с, что представляется нам весьма проблематичным.

С нашей точки зрения наиболее характерные особенности (пункты 3-6) ГДП землетрясений лучше объяснить неизменными в течение длительного времени физико-химическими свойствами магмы, заполняющей трещины, и характерными особенностями процессов, протекающих в магматическом расплаве и являющихся причиной возникновения в нем импульсов давления. Форма записи ГДП землетрясений также свидетельствует об импульсной природе их источника [13]. 

Причиной импульсов давления в магме могут быть быстропротекающие фазовые переходы в ограниченных объемах метастабильной магмы. Таким процессом, по нашему мнению, является спонтанная полимеризация в расплаве низкомерных форм силикатов, протекающая, к примеру, по следующему механизму [15]:

2 [ SiO3 (OH)] 3- распл. = [ SiO2 O7] 6-распл. + H2O пар.

Спонтанная полимеризация в метастабильной магме должна происходить с бурным выделением летучих (фазовый переход 1-го рода), что и приводит к импульсам давления в магме. 

Из экспериментальных данных [43] известно, что в базальтовых расплавах при внешнем давлении P = 1 атм (105 Па) газовый пузырек может появиться и вырасти до микронных размеров за время, измеряемое миллисекундами. Уровень метастабильности при этом может составлять несколько атмосфер [43]. Но процесс газоотделения на глубине 20-40 км (внешнее давление P = (8-16).108 Па) и при P = 1 атм (105 Па) должен иметь некоторые различия. Во-первых, процесс газоотделения на большой глубине из-за большого гидростатического давления можно рассматривать как происходящий в замкнутом объеме. Во-вторых, отличаются физико-химические свойства магматического расплава, определяющие скорость роста пузырьков при различном давлении, - газосодержаниие, вязкость, коэффициент диффузии. Эти факторы влияют на скорость появления и роста пузырьков. 

Спонтанная полимеризация метастабильной магмы в замкнутом объеме, каковым является магматическая система на глубине 20-40 км, может происходить по следующей схеме, которая представляет собой процесс с обратной связью.

Пусть в некотором объеме, занимаемом метастабильной магмой, началась спонтанная полимеризация и, следовательно, газоотделение. Образование свободной газовой фазы и рост газовых пузырьков приводит к возрастанию давления в этом объеме и снижает уровень метастабильности и, следовательно, ведет к замедлению и приостановке процессов полимеризации и газоотделения. Рост газовых пузырьков происходит до достижения ими состояния механического и химического равновесия с окружающей их магмой. После окончания роста пузырьков давление в магме постепенно приходит к первоначальному значению, и процессы полимеризации и газоотделения начинаются вновь. Скорость роста пузырьков в магме зависит от многих факторов, главные из которых: давление пересыщения магматического расплава, вязкость магмы, коэффициенты диффузии и теплопроводности. Таким образом, в магме в области спонтанной полимеризации периодически будут генерироваться импульсы давления с частотой, зависящей от вышеперечисленных факторов и определяемой внутренними свойствами магмы. Эти импульсы давления на стенках трещины формируют сейсмические волны, период колебаний в которых определяется длительностью самого импульса давления в магме и размерами трещины. 

Исходя из предлагаемой гипотезы, попытаемся связать период сейсмических колебаний ГДП землетрясений с физическими характеристиками магматического расплава и сравнить с экспериментальными данными. Для этого определим основные факторы, влияющие на рост пузырьков. 

Так как теплопроводность играет заметную роль только для больших пузырьков (а в нашем случае мы имеем дело с пузырьками микронных и субмикронных размеров), процесс роста пузырьков будем считать изотермическим. Для того чтобы определить, какому из оставшихся факторов (диффузия и вязкость) принадлежит основная роль в длительности формирования импульса давления в магме, рассмотрим влияние диффузии и вязкости на рост пузырьков в магме независимо друг от друга. Расчеты будем проводить для водонасыщенного базальтового расплава. Вначале оценим влияние вязкости. 

Решение задачи о динамике газовых пузырьков основывается на уравнении Рэлея-Тейлора c учетом вязкости [42]:

image1.gif (764 bytes)(1)

где R - радиус пузырьков, m - плотность магмы, - кинематическая вязкость магмы, P - давление в магме, P1 - давление в газовом пузырьке.

Для того чтобы оценить время релаксации избыточного давления, возникающего при расширении пузырьков, пренебрегаем первыми двумя членами в уравнении (1) вследствие их малости:

image2.gif (404 bytes)(2)

Условие механического равновесия в газовом пузырьке будет определяться уравнением:

image3.gif (226 bytes)(3)

где - коэффициент поверхностного натяжения.

Подставляя выражение (3) в (2), получим уравнение:

image4.gif (246 bytes),

из которого интегрированием по времени можно определить длительность импульса:

tau.gif (58 bytes)=image5.gif (376 bytes). (4) 

Для водонасыщенных базальтовых магм на глубине 20 - 40 км по данным [18] вязкость = m ~ 101 -102 Пуаз (1-10 Па/с), а 102 дин/см (10-1 Па/c) [17]. Как следует из формулы (4), для ~ 1с радиус R возникших в магме пузырьков должен составлять 10-1-10-2см, что на несколько порядков превосходит расчетные [20] и экспериментальные [43] данные. Следовательно, время в нашей модели должно определяться другими параметрами.

Рассмотрим теперь процесс роста пузырьков газа исходя из уравнения диффузии:

image6.gif (345 bytes)(5)

где D - коэффициент диффузии, (для базальтовой магмы Ключевского вулкана при P = 5000 атм ( 5.108 Па ) D ~ 10-9 м2/c [16]); dM - масса газа, диффундирующего в пузырек за время dt через поверхность пузырька ds; d g/dx - градиент концентрации свободного газа в магме, равный:

image7.gif (392 bytes)

где W(P) - весовая концентрация растворенного в магме газа, dW(P)/dP 4*10-10 г/ Па [16].

Из уравнения (5) следует, что длительность импульса в магме будет зависеть от коэффициента диффузии и концентрации свободного газа в магме по формуле:

image8.gif (507 bytes)

Для наших оценок о влиянии диффузии на рост пузырьков в первом приближении будем считать, что d g/dx = const и, учитывая, что dM= 4/3 R3 d , - плотность газа в пузырьках, а ds=4 R2 , из последнего уравнения получим, что:

image9.gif (291 bytes)(6)

Средний радиус образовавшихся пузырьков R немного превышает радиус газовых зародышей при нуклеации, размеры которых можно оценить при следующем условии. Будем считать, что появление и рост пузырьков происходят, в основном, за счет сжимаемости магмы. Тогда можно записать, что:

image10.gif (276 bytes)R3N и image11.gif (278 bytes)

где - модуль объемного сжатия, 1/ ~ (1-3) 109 Па [17,18]; N - количество газовых зародышей в 1 см3 магмы, N ~ (1/dx)3.

Подставляя известные значения в формулу (6), мы, при N ~ 109-1012, получим, что время релаксации лежит в пределах наблюдаемых нами периодов P и S волн.

Исходя из гипотезы Верхугена [44] об образовании пепла, количество пузырьков N в единице объема должно соответствовать минимальному размеру пепловых частиц. В наших расчетах минимальный размер пепловых частиц будет составлять ~ 1 Мкм, что попадает в диапазон мельчайших пепловых частиц, образующихся при извержениях базальтовых вулканов [14].

Проведенные оценки нам представляются вполне разумными и позволяют считать основным фактором, определяющим скорость роста пузырьков в магме на начальной стадии, процесс диффузии.

Энергетические оценки по формуле dE = PdV + VdP показывают, что для того, чтобы произвести землетрясение энергетического клаcса KS 6 по предлагаемой нами гипотезе, необходимо, чтобы в течение 0,5-1 секунды на глубине ~ 30 км произошла спонтанная полимеризация сопровождаемая выделением газа в объеме магмы ~ 10 м3 с уровнем пересыщения ~ 1 атм. (105 Па).

В рамках предлагаемой модели достаточно хорошо можно объяснить почти все особенности ГДП землетрясений, выявленные при их предварительном исследовании. Непонятным пока остается только большой интервал глубин (20-35 км), в котором происходят ГДП землетрясения. Но если считать, что на глубине 20-35 км магма находится в насыщенном состоянии, то при движении магмы вверх отдельные ее порции достигают метастабильного состояния на всем интервале глубин и, таким образом, вопрос об интервале глубин ГДП землетрясений становится легко объясним. В этом случае понятным становится роевой характер появления ГДП землетрясений. 

Образование газовых пузырьков на глубинах 20-40 км приводит к повышению давления в магматической системе и, как следствие, миграции вверх очагов землетрясений в слоях 2-3. 

Дальнейшие исследования пространственно-временных закономерностей распределения ГДП землетрясений и их характеристик в различные периоды сейсмической и вулканической активности с использованием цифровых записей, возможно, позволят подтвердить предлагаемую модель генерации ГДП землетрясений.

Следует подчеркнуть, что в рассмотренной выше модели наша задача заключалась в том, чтобы показать возможность генерации ГДП землетрясений в результате фазовых переходов 1-го рода (образование газовой фазы). Поэтому расчеты, проведенные нами, были сделаны для системы расплав-вода, наиболее изученной к настоящему времени. Но принципиальная схема генерации ГДП землетрясений в предложенной нами модели не изменится, если в процессе нуклеации газовых пузырьков в качестве активного агента будет выступать другой газ. Определение подходящего на такую роль магматического газа и возможных физико-химических процессов, в результате которых образуется газовая фаза, является задачей геохимии. Диапазон глубин и характеристики ГДП землетрясений дают дополнительные условия для такого поиска.

Выводы

По результатам анализа многолетних сейсмических наблюдений в районе Северной группы вулканов (1977-1996 гг.) под вулканом Ключевской выделяются 4 сейсмически активных слоя: -4-5 км; 3-12 км; 12-20 км; 20-40 км. Установлено, что сейсмичность слоев 2 и 3 зависит от проявлений внешней активности и отражает состояние питающей магматической системы на этих глубинах.

Сейсмичность слоя 20-40 км резко отличается от сейсмичности вышележащих горизонтов глубин по ряду исследованных параметров: угловому коэффициенту графика повторяемости, максимальному энергетическому классу землетрясений, суммарной сейсмической энергии и числу землетрясений. Динамические и кинематические параметры землетрясений в этом слое и землетрясений на глубинах меньше 20 км также различны. Это позволяет предполагать иную генетическую природу землетрясений, происходящих под вулканом в нижних горизонтах земной коры и переходном от коры к мантии слое.

Предложена модель генерации ГДП землетрясений, в которой в качестве возбуждающей силы источника землетрясений рассмотрен процесс спонтанной полимеризации магматического расплава и сопутствующего ей газоотделения. Проведенные расчеты показывают удовлетворительное согласие предложенной модели с экспериментальными сейсмическими данными. 

Так как ГДП землетрясения связаны с движением магмы, есть основания предполагать, что исследование длиннопериодной сейсмичности на глубинах более 20 км под вулканом может выявить дополнительные прогностические признаки извержений. 

Авторы выражают благодарность В.Т.Гарбузовой, первой обратившей внимание на необычную форму землетрясений под Ключевским вулканом в нижних горизонтах коры и переходном от коры к мантии слое и внесшей существенный вклад в обработку этих землетрясений.

Список литературы

Аносов Г.И., Балеста С.Т., Иванов Б.В., Утнасин В.К., Основные черты тектонического строения Ключевской группы вулканов (Камчатка) в связи с ее глубинной структурой // Докл. АН СССР. 1974. Т.219. N 5. С.1192-1195.

Большое трещинное Толбачинское извержение (БТТИ, Камчатка, 1975-1976 гг.) / Отв. ред. Федотов С.А. М.: Наука, 1984. 638 с.

Гаврилов В.А., Воропаев В.Ф., Головщикова И.А. и др., Комплекс радиотелеметрической аппаратуры ТЕСИ-2 // Сейсмические приборы. 1987. N 19. С.5-17.

Гордеев Е.И., Природа сейсмических сигналов на активных вулканах: Автореф. дисс. док. физ.-мат.наук. Москва, 1998. 30 с.

Горельчик В.И., Сейсмичность магматической системы Ключевского вулкана на Камчатке // Тез.докл. VII Всесоюзного вулканологического совещания "Вулканизм, структуры и рудообразование". Иркутск, июнь 1992. Петропавловск-Камчатский, 1992. С.48-49.

Горельчик В.И., Гарбузова В.Т., Сейсмичность Ключевского вулкана как отражение его современной магматической деятельности (настоящий сборник).

Горельчик В.И., Зобин В.М., Токарев П.И., Сейсмичность вулканов // Вулканология и сейсмология. 1987. N 6. С.61-77.

Горельчик В.И., Гарбузова В.Т., Дрознин Д.В., Левина В.И. Фирстов П.П., Чубарова О.С., Широков В.А., Вулкан Шивелуч: глубинное строение и прогноз извержений по данным детальной сейсмичности, 1962-1994 гг. // Вулканология и сейсмология. 1995. N 4-5. С.54-75.

Горельчик В. И., Чубарова О.С., Гарбузова В.Т., Сейсмичность района Северной группы вулканов // Вулканология и сейсмология. 1988. N 1. С.90-100.

Горельчик В.И., Сторчеус А.В., О длиннопериодных вулканических землетрясениях в нижних горизонтах земной коры и переходном от коры к мантии слое под Ключевским вулканом // Материалы научно-практической конференции "Проблемы сейсмичности Дальнего Востока, новая карта сейсмического районирования ОСР-97, ее роль и значение для Петропавловска-Камчатского и области". Петропавловск-Камчатский, 1999, 6-9 апреля. С.73.

Двигало В.Н., Морфологические предвестники (первые признаки) активизации некоторых вулканов Камчатки // Вулканология и сейсмология. 2000. N 4. С.3-16.

Двигало В.Н., Мелекесцев И.В. Крупные современные обвалы на конусе вулкана Ключевской (по результатам ревизии последствий событий 1944-1945 и 1984-1985 гг. // Вулканология и сейсмология. 2000. N 1. С.3-17.

Дженкинс Г., Ваттс Д. Спектральный анализ и его приложения. М.: Мир, 1971. Т.1 316 с.

Земцов А.Н. Исследование твердой дисперсной фазы эруптивного вулканического облака: Автореф. дисс. канд. геол.-мин. Наук. М., 1986. С.22.

Кадик А.А., Луканин О.А. Дегазация верхней мантии при плавлении. М.: Наука, 1986. 97 с.

Канаи К., Осада К., Иосизава К Соотношения между периодами и амплитудами сейсмических волн // Слабые землетрясения. М.: Из-во ин. лит-ры, 1961. С.231-242.

Лебедев Е.Б, Влияние воды на физико-химические свойства расплавов магматического состава: Автореф. дисс. док. химических наук. М., 1981. 42 с.

Персиков Э.С. Вязкость магматических расплавов. М.: Наука, 1984. 160 с.

М.А.Садовский. Избранные труды. Геофизика и физика взрыва. М. Наука, 1999. 335 c.

Сторчеус А.В. К вопросу о природе вулканических взрывов // Вулканология и сейсмология. 1983. N 4. С.72-78.

Сургучев П.И., Горельчик В.И., Левина В.И., Мячкин В.В., Массовое определение гипоцентров землетрясений на ЭВМ в районе Северной группы вулканов Камчатки // Вулканология и сейсмология. 1992. N 2. С.50-63.

Токарев П.И. Рой землетрясений вулкана Шивелуч в мае 1964 г. // Бюлл. вулканол. станций. 1964. N 38. С.41-44.

Федотов С.А., Кузин И.П., Бобков М.Ф. Детальные сейсмологические исследования на Камчатке в 1960-1961 гг. // Изв. АН СССР. Сер. геофиз. 1964. N 9. С.1360-1375.

Федотов С.А. Энергетическая классификация курило-камчатских землетрясений и проблема магнитуд. М.: Наука, 1972. 116 с.

Федотов С.А., Токарев П.И. Годзиковская А.А., Зобин В.М., Детальные данные о сейсмичности Камчатки и Командорских островов (1965-1968 гг.) // Сейсмичность и сейсмический прогноз, свойства верхней мантии и их связь с вулканизмом на Камчатке Новосибирск: Наука, 1974. С.35-46.

Федотов С.А., Жаринов Н.А., Горельчик В.И. Деформации и землетрясения Ключевского вулкана, модель его деятельности // Вулканология и сейсмология. 1988. N 2. С.3-42.

Фирстов П.П., Широков В.А., Локализация корней вулканов Ключевской группы по сейсмологическим данным // Вулканизм и глубины Земли. М.: Наука, 1971 С.113-117.

Цубои Ч. Соотношения между магнитудой и повторяемостью землетрясений в Японии и вблизи нее // Слабые землетрясения. М.: Из-во ин. лит-ры, 1961. С.334-342.

Широков В.А., Геодинамические аспекты взаимосвязи сейсмических и вулканических процессов, прогноз сильных землетрясений и вулканических извержений по сейсмологическим данным // Основные результаты научно-исследовательских работ Института вулканической геологии и геохимии за 1991-1996 гг. Петропавловск-Камчатский, 1996. С.73-80.

Brune J.N. Tectonic stress and the spectra of seismic shear waves earthquakes // Journal of Geophysical Research. 1970. V.75. N26. P.4997-5009.

Choue, B.A. Long-period volcano seismicity: its source and use in eruption forecasting. // Nature. 1996. V.380. P.309-316.

Chouet B.A., Page R.A., Stephens C.D., Lahr J.C., and Power J.A. Precursory swarms of long-period events at Redoubdt Volcano (1989-1990), Alaska: Their origin and use as a forecasting tool // Journal of Volcanology and Geothermal Research. 1994. V.62. P.95-135.

Chouet B.A., Excitation of a buried magmatic pipe: A seismic source model for volcanic tremor: Journal of Geophysical Research. 1985. V.90. P.1881-1893.

Chouet B.A. A seismic source model for the source of long-period events and harmonic tremor: Journal of Geophysical Research. 1988. V.93. P.4373-4400.

Chouet B.A. A seismic model for the source of long-period events and harmonic tremor // Gasparini P., Scarpa R., and Aki K., etc. Volcanic seismology: International Association of Volcanology and Chemistry of the Earth's Interior (IAVSEI). Proceedings in Volcanology, Berlin, Springer-Verlag. 1992. P.113-156.

Ferrazzini V., Chouet B.A., Fehler M., and Aki K. Quantitative analysis of long-period events recorded during hydrofracture experiments at Fenton Hill, New Mexico // Journal of Geophysical Research. 1990. V.95. P.21871-21884.

Harlow D.H., Power J.A., Laguerta E.P., Ambubuyog G., White R.A.,and Hoblit R.P. Precursory seismicity and forecasting of the June 15, 1991, eruption of Mount Pinatubo // Newhall, Christopher G. and Punongbayan, Raymundo S., Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines, Philippine Institute of Volcanology and Seismology, Quezon City and University of Washington Press, Seattle and London, 1996. P.285-306

Klein F.W., Koyanagi R.Y., Nakata, J.S., and Tanagawa W.R.. The seismicity of Kilayea's magma sistem, Data from Hawaiian Volcano Observatory 1969-1985 // Decker R.W.,Wright T.L., and Staffe, P.H., eds. Volcanism in Hawaii: U.S. Geological Survey Professional Paper 1350. 1987. V.2. P.1019-1186.

Koyanag, R.Y., Chouet B.A., and Aki K. Origin of volcanic tremor in Hawaii, Part I, Data from Hawaiian Volcano Observatory 1969-1985 // Decker R.W.,Wright T.L., and Staffer P.H., eds. Volcanism in Hawaii: U.S. Geological Survey Professional Paper 1350. 1987. V.2. P.1228-1258.

Lahr J.C., Chouet B.A., Stephens C.D., Power J.A., and Page R.A.. Earthquake classification, location, and error analysis in a volcanic environment: Implications for the magmatic system of the 1989-1990 eruptions at Redoubdt Volcano, Alaska // Journal of Volcanology and Geothermal Research. 1994. V.62. P.137-151.

Ramos E.G., Laguerta E.P., and Hamburger M.W. Seismicity and magmatic resurgence at Mount Pinatubo in 1992 // Newhall, Christopher G. and Punongbayan, Raymundo S. Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines, Philippine Institute of Volcanology and Seismology, Quezon City and University of Washington Press, Seattle and London, 1996. P.387-406.

Rosner D.R., Epstein M. Effects of interface kinetics, capillarity and solute diffusion on bubble growth rate in highly supersaturated liquids // Chem. Eng. Sci. 1972.V.27. P.69-88.

Sparks R.S.J. The dynamics of bubble formation and growth in magmas: a review and analysis // Journal of Volcanology and Geothermal Research. 1978. V.3. P.1-37.

Verhoogen J. Mechanics of ash formation // Am. J. Sci. 1951. V.249. P.729-739.

White Randall A., Precursory Deep Long-Period Earthquakes at Mount Pinatubo: Spatio-Temporal Link to a Basalt Trigger, in: Newhall, Christopher G. and Punongbayan, Raymundo S., Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines, Philippine Institute of Volcanology and Seismology, Quezon City and University of Washington Press, Seattle and London, 1996. P.307-327.


Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.