на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Шпаргалка: Оценка методологического обеспечения бурения скважин

Билет 12

34. БК, физические основы, решаемые задачи

Под боковым каротажем понимают каротаж сопротивления зондами с экранными электродами и фокусировкой тока. Используются трех-, семи- и девятиэлектродные зонды:

3-электродный зонд с фокусировкой тока представляет собой длинный проводящий цилиндр, разделенный изоляционными промежутками на три части (3 цилиндра). Центральный электрод испускающий, боковые электроды экранирующие. Между этими экранирующими и испускательными установлена постоянная разность потенциалов. Благодаря этому ток не распускается по пластам, а движется чётко перпендикулярно этому электроду. Это сокращает влияние скважины и вмещающих элементов на рез-ты измерений.

7- электродный зонд. Состоит из центрального, 2 боковых электродов и ещё 2 пар дополнительных эл-в за боковыми. Создают напряжение равное 0, что соотв-т тому, как будто пласты на уровне этих электродов замещены изоляторами, что препятствует растеканию тока по скважине.

9- электродный зонд. Используется для изучения незатронутой проникновением части пласта и для изучения проникновения путём смены полярностей. Это псевдобоковой каротаж.

35. ПВР, применяемые для интенсификации притока

Прострелочные работы:

1. перфорация обсадных колонн для вскрытия пластов

2. срезание в скважинах колонн и труб для их извлечения

3. отбор образцов ГП в скважинах

4. отбор проб жидкости и газа

Взрывные работы:

1. повышение продуктивности скважины

2. разобщение пластов

3. очистка фильтров

4. освобождение и извлечение труб из скважины при авариях

5. борьба с поглощениями ПЖ при бурении

6. ликвидация и тушение пожаров

Перфорацией называется процесс образования отверстий в обсадных трубах, цементном камне и пласте с помощью специальных скважинных стреляющих аппаратов — перфораторов. По типу пробивного элемента перфораторы подразделяются на беспулевые (кумулятивные- харак-ся направленной струёй взрыва, они как бы прожигают пласт) и пулевые. В практике прострелочных работ кумулятивная перфорация получила наибольшее распространение, так как она обеспечивает высококачественное вскрытие пластов в самых различных геологических и скважинных условиях. Основными элементами любого кумулятивного перфоратора являются взрывной патрон и электропроводка. Кумулятивные перфораторы подразделяют на корпусные (одно- и многоразовые) и бескорпусные (в большинстве случаев одноразовые). Отбор образцов со стенок скважины осуществляется при помощи стреляющих и сверлящих грунтоносов. Стреляющие боковые грунтоносы предназначены для отбора образцов сравнительно мягких пород (песков, рыхлых песчаников) и характеризуются невысокой эффективностью (примерно 50—60 % бойков выносят образцы породы, остальные извлекаются пустыми). Сверлящий грунтонос позволяет за один спуск отобрать от 5 до 15 образцов породы диаметром 20 мм и длиной до 50 мм. Затруднения в отборе образцов возникают при наличии на стенке скважины толстой глинистой корки, а также каверн. Наилучший эффект применения сверлящих грунтоносов получают в плотных породах после промывки и проработки скважины.


36. Определение высоты подъема цемента по термометрии скважин

После окончания бурения в скважину, как правило, опускают обсадную колонну, а затрубное пространство между стенкой скважины и внешней поверхностью колонны заливают цементным раствором - цементируют. Целью цементирования является изоляция пластов друг от друга для исключения перетоков различных флюидов из одного пласта в другой. Высококачественное цементирование обсаженных колонн позволяет однозначно судить о типе флюида, насыщающего породу (нефть, газ, вода, нефть с водой), правильно подсчитывать запасы нефти и газа и эффективно осуществлять контроль разработки нефтяных и газовых месторождений. Качество цементирования обсадных колонн контролируется методами термометрии и радиоактивных изотопов, гамма-гамма методом и акустическим методом.

Метод термометрии. Определение местоположения цемента в затрубном пространстве по данным термических исследований основано на фиксировании тепла, выделяющегося при твердении цемента. Метод позволяет установить верхнюю границу цементного кольца и выявить наличие цемента в затрубном пространстве. Зацементированный интервал отмечается на термограмме повышенными значениями температуры на фоне общего постепенного возрастания ее с глубиной и расчлененностью кривой по сравнению с кривой против незацементированных участков скважины. Цементы различных марок отличаются неодинаковым временем твердения, количеством выделяющегося тепла и максимальной температурой. Наибольшие температурные аномалии можно зафиксировать и промежутке времени от 6 до 24 часов после окончания заливки цемента. Чем больше цемента участвует в реакции, тем значительнее тепловой эффект. Сильная дифференциация температурной кривой в интервале нахождения цемента обусловлена литологическими особенностями и кавернозностью разреза. Как правило, песчаным породам соответствуют пониженные температурные аномалии, глинистым – повышенные. Песчаные породы, имеющие наименьшее тепловое сопротивление, значительно быстрее отдают тепло в окружающую среду, чем глины, тепловое сопротивление которых выше. Кроме этого, в глинистых породах чаще всего образуются каверны, в которых скапливается значительное количество цемента.


Билет 13

бурение скважина методика

Все пласты, против которых фиксируется приток (приемистость) по данным дебитометрии-расходометрии, считаются отдающими (поглощающими). Нижняя граница притока (приемистости) в скважине устанавливается по результатам исследования тремя методами: термометрии, механической и термокондуктивной дебитометрии. Термодебитометрия является основным методом выявления отдающих (поглощающих) пластов. Объемы жидкости или газа, циркулирующие в стволе скважины, фиксируются глубинными расходомерами и дебитомерами. Расходомерами измеряют расход воды, закачиваемой в пласт, дебитомерами - притоки нефти, газа и их смеси с водой. Расходомеры отличаются от дебитомеров диаметром корпуса глубинного прибора. У расходомеров он больше, чем у дебитомеров, поскольку они предназначены для измерения больших расходов жидкости в нагнетательных скважинах (до 2-5 тыс. м3/сут). Имеется два типа расходомеров (или дебитомеров) - механические и термокондуктивные.

Прибор снабжается пакером, который предназначен для перекрытия ствола скважины и направления потока жидкости через прибор. Существующие типы глубинных расходомеров и дебитомеров различаются в основном конструкциями пакерующих устройств. Дебитомеры с абсолютной пакеровкой обеспечивают проход всего потока через измерительный канал. Дебитомеры с пакерами зонтичного типа лишь частично перекрывают пространство между стенкой скважины и дебитомером. Измерения проводят в интервале перфорации при подъеме прибора. Вначале с прикрытым пакером регистрируют непрерывную кривую, по которой намечают положение точечных измерений. На участках с резкими изменениями дебита расстояние между точками выбирают равным 0,4 м, на участках с малыми изменениями равным 1-2 м. Измерения на точках выполняют с полностью открытым пакером не менее трех раз, полученные показания усредняются. По результатам измерений строят профили притока или приемистости. Профилем притока (или приемистости) пласта называют график зависимости количества жидкости, поступающей из пласта (или нагнетаемой в пласт) от глубины залегания работающих интервалов.


Билет 14

40. Микрозондирование, физические основы, кривые, решаемые задачи

Под микрокаротажем (МК) понимают каротаж сопротивления обычными градиент- и потенциал-зондами малых размеров, расположенными на прижимном изоляционном башмаке. При работе башмак с электродами прижимается пружинами к стенке скважины, чем достигаются частичное экранирование зонда от промывочной жидкости и уменьшение влияния ее на результат измерений. В средней части башмака микрозонда смонтированы три электрода — А, М и N расстоянии 25 мм друг от друга. С их помощью по обычной схеме электрического каротажа образуют градиент-микрозонд A 0,025M0,025N и потенциал-микрозонд А0,05М, которыми производят измерения в скважине одновременно. По замеру двух кривых сопротивления, зарегистрированных микрозондами с различными радиусами исследований, можно получить представление об удельном сопротивлении прилегающей к скважине части пласта и оценить влияние глинистой корки и слоя промывочной жидкости.

Интерпретация кривых МК заключается в детальном расчленении разреза, выделении в нем проницаемых и непроницаемых прослоев, определении удельного сопротивления промытой части пласта рпп. Если против проницаемого пласта образуется глинистая корка, кажущиеся сопротивления, измеряемые потенциал-микрозондом, значительно выше сопротивлений, измеренных одновременно против тех же пластов градиент-микрозондом с заметно меньшим радиусом исследования. Пласт следует считать проницаемым, если имеет место положительное расхождение и удельное сопротивление его части, прилегающей к скважине, превышает сопротивление промывочной жидкости не более чем в 25 раз.

Влияние глинистой корки на измерения обычными микрозондами велико. Наличие в скважине соленого раствора также ограничивает использование этих кривых для количественной интерпретации. В таких случаях для определения рпп и рзп применяются микрозонды с фокусировкой тока (боковой микрокаротаж).

Микрокаротаж обычными микрозондами применяют для детального исследования разрезов скважин, заполненных слабоминерализованной промывочной жидкостью. По данным МК решаются следующие задачи: расчленение разреза на проницаемые и непроницаемые пласты, уточнение литологического состава пород, определение границ пластов и их эффективной мощности.

Наиболее благоприятными условиями для применения МК являются вскрытие скважиной терригенного разреза и заполнение ее сравнительно слабоминерализованной промывочной жидкостью. Измерения диаграмм МК сопровождаются замером диаметра скважины каверномером, что облегчает интерпретацию кривых микрокаротажа.

41. Использование данных РК для литологического расчленения разреза

Радиоактивность-способность некоторых атомных ядер самопроизвольно распадаться с испусканием α, β, γ лучей, а иногда и других частиц. Для измерения интенсивности естественного гамма-излучения по стволу скважины пользуются скважинным прибором, содержащим индикатор γ- излучения. В качестве индикатора используют газоразрядные сцинтилляционные счетчики.

Практические кривые РК существенно отличаются от расчетных двумя особенностями: наличием иззубренности кривой, которая вызвана статистическими флуктуациями и влиянием инерционности регистрирующей аппаратуры, связанной с наличием в измерительном канале интегрирующей ячейки.

Радиоактивное излучение представляет собой результат большого числа процессов, каждый из которых возникает в отдельных атомах независимо от других. Процессы следуют друг за другом через произвольные и неравные интервалы времени. Поэтому поступающее на индикатор излучение при одних и тех же условиях не остается постоянным, а непрерывно колеблется около средней величины. Такие колебания называют флуктуациями. Чтобы уменьшить ширину статистических флуктуаций и улучшить вид кривой, используют интегрирующую ячейку. Эта ячейка осредняет показания РК во времени, поэтому при переходе скважинного прибора через границу между пластами новые показания устанавливаются не сразу, а через некоторое время. В результате кривая РК как бы смещается в направлении движения зонда. Смещение тем больше, чем больше произведение постоянной времени ячейки τ на скорость перемещения прибора V. Поэтому границы пластов по кривым РК определяют так: подошву пласта отбивают по началу крутого подъема, а кровлю - по началу крутого спада кривой. Так как показания РК в той или иной степени усреднены, некоторый начальный участок с плавным подъемом и спадом кривой не учитывается. Интерпретации подлежат лишь аномалии, превышающие ширину дорожки статистических флуктуаций.

42. Оценка качества цементного камня по данным АКЦ

Качество цементирования обсадных колонн контролируется методами термометрии и радиоактивных изотопов, гамма-гамма методом и акустическим методом.

Акустический метод. Этот метод основан на измерении амплитуды продольной упругой волны, распространяющейся по колонне, цементному кольцу и породе, и регистрации времени распространения этих колебаний. Он позволяет: 1) установить высоту подъема цемента; 2) выявить наличие или отсутствие цемента за колонной; 3) определить наличие каналов, трещин и каверн в цементном камне; 4) изучить степень сцепления цемента с колонной и породами.

Когда за колонной цемента нет или он имеется, но по всему периметру не сцеплен с колонной, приемник отмечает продольную волну по колонне. Она имеет максимальную амплитуду вследствие малого затухания и время пробега, соответствующее скорости распространения упругих воли в стали (V = 5400 м/сек). Против муфтовых соединений колонны наблюдается уменьшение амплитуды колебаний в связи с рассеянием энергии на резьбовых соединениях и увеличение времени пробега ("звенящая" колонна). Если цементное кольцо сцеплено только с колонной, то упругая волна по колонне будет резко ослаблена вследствие демпфирующего влияния цементного кольца и амплитуда Ак будет на уровне помех. В этом случае к приемнику с заметной амплитудой придет волна по цементному кольцу, в котором скорость распространения упругих колебаний невелика (Vц = 2500 м/сек). Поэтому будет регистрироваться максимальное время Тп. Если цементное кольцо одновременно сцеплено с колонной и породой, то первой к приемнику будет подходить головная волна по породе, так как Vп>Vц. В этом случае Ап<Ак.мак, Тп≠ Тк икривые Ап и Тп сходны с аналогичными кривыми, полученными в необсаженной колонне и соответствуют кривым других геофизических методов. Измерение аппаратурой АКЦ проводится через 1-2 суток после заливки цементного раствора. Масштаб регистрации Ак выбирается так, чтобы в зацементированной части скважины регистрируемый сигнал был близок к порогу чувствительности аппаратуры.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.