на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Альтернативные носители информации
p align="left">До сих пор неизвестно происхождение термина Flash, так как это слово имеет три различных перевода. Соответственно, существует три версии названия памяти:

· Flash переводится как «короткий кадр». Компания Toshiba дала такое название из-за короткого по времени процесса стирания данных (In da Flash -- в мгновение ока).

· Flashing можно перевести как прожиг, засвечивание. Flash-память по-прежнему прожигается, как и ее предшественники.

· Третье значение этого слова -- блок, кадр. Запись/стирание такой памяти осуществляется блоками.

По устройству чип флэш-памяти отдаленно напоминает микросхему динамической энергозависимой памяти, только вместо конденсаторов в ячейках памяти установлены полупроводниковые приборы -- транзисторы. При подаче напряжения на выводы транзистора он принимает одно из фиксированных положений -- закрытое или открытое. И остается в этом положении до тех пор, пока на выводы транзистора не будет подан электрический заряд, изменяющий его состояние. Таким образом, последовательность логических нулей и единиц формируется в этом типе памяти подобно ПЗУ -- закрытые для прохождения электрического тока ячейки распознаются как логические единицы, открытые -- как логические нули.

Таким образом, в самом простом случае ячейка Flash состоит из одного полевого транзистора. Элемент включает в себя специальную электрически изолированную область, называемую «плавающим затвором». Этот термин возник из-за того, что потенциал этой области не является стабильным, что позволяет накапливать в ней электроны (именно здесь и хранится вся информация памяти). Выше «плавающего» находится управляющий затвор, который является неотъемлемой частью при процессе записи/стирания данных памяти. Эта область напрямую соединена с линией слов. Перпендикулярно этой линии располагается линия битов, которая соединена со стоком (при записи данных из этой области транзистора появляется поток электронов). Сток разделяется с истоком специальной подложкой, которая не проводит электрический ток.

В начале развития Flash каждая ячейка памяти хранила один бит информации и состоила из одного полевого транзистора. Прогресс не стоит на месте, через несколько лет после выпуска чудо-микросхемы были проведены успешные испытания флешек, в которых ячейка хранила уже два бита. Естественно, что на такую память можно было записать в два раза больше информации. В настоящее время уже существуют теоретические разработки памяти с четырехбитными ячейками.

Как же устроена такая ячейка? Ведь теоретически наличие заряда в ячейке памяти означает 1, отсутствие 0, остальные значения представить невозможно. Но на самом деле, в микросхеме с MLC существует различие величин заряда, которые накапливаются на «плавающем» затворе. Благодаря этому различию, информация в ячейке может быть представлена различными битовыми комбинациями. Величину заряда на затворе можно определить измерением порогового (максимального) напряжения транзистора и по итогам этого измерения представить битовую комбинацию.

Перезапись и стирание Flash значительно изнашивает микросхему, поэтому технологии производства памяти постоянно совершенствуются, внедряются оптимизирующие способы записи микросхемы, а также алгоритмы, направленные на равномерное использование всех ячеек в процессе работы.

Преимущества флэш-памяти в независимости от наличия или отсутствия электрического питания, в долговременности хранения информации (производители гарантируют сохранность данных на протяжении 10 лет, но на практике должно быть больше) и в высокой механической надежности (в накопителях на базе флэш-памяти нет никаких механических устройств, следовательно, нечему ломаться). Недостатки -- в высокой сложности устройства (транзисторы имеют микронные размеры), в невысоком быстродействии (время изменения состояния транзистора больше, чем время заряда-разряда конденсатора) и в относительно высокой стоимости микросхем (опять же из-за сложности устройства и серьезных финансовых вложениях производителей в развитие технологии).

Флэш-память быстро прогрессирует. За последние несколько лет появились новые типы микросхем -- был осуществлен массовый переход с 5-вольтовой технологии питания на 3,3-вольтовую, были применены новые типы полупроводниковых приборов, разработаны и внедрены в производство механизмы ускорения процедуры записи-чтения информации. Кроме того, производство флэш-памяти находится под жестким прессингом конкуренции. Для нас, пользователей цифровых устройств, это несомненный плюс, поскольку позволяет надеяться на снижение цен на карты флэш-памяти.

Хотя Flash и лидирует на компьютерном рынке, ее могут вытеснить другие новые технологии. Например, новейшая память на кремниевых нанокристаллах. Отличие такой памяти от Flash в следующем: подложка между стоком и истоком теперь состоит из кремниевых нанокристалльных сфер. Такая прослойка предотвращает передачу заряда с одного нанокристалла на другой, повышая, таким образом, надежность -- один дефект не ведет к полному сбою, как в нынешней энергонезависимой памяти на транзисторах с плавающим затвором. Первый в мире работоспособный образец такой памяти был предоставлен компанией Motorola.

Организация flash-памяти

Ячейки флэш-памяти бывают как на одном, так и на двух транзисторах.
В простейшем случае каждая ячейка хранит один бит информации и состоит из одного полевого транзистора со специальной электрически изолированной областью ("плавающим" затвором - floating gate), способной хранить заряд многие годы. Наличие или отсутствие заряда кодирует один бит информации.

При записи заряд помещается на плавающий затвор одним из двух способов (зависит от типа ячейки): методом инжекции "горячих" электронов или методом туннелирования электронов. Стирание содержимого ячейки (снятие заряда с "плавающего" затвора) производится методом тунеллирования.

Как правило, наличие заряда на транзисторе понимается как логический "0", а его отсутствие - как логическая "1".

Современная флэш-память обычно изготавливается по 0,13- и 0,18-микронному техпроцессу.

Общий принцип работы ячейки флэш-памяти.

Рассмотрим простейшую ячейку флэш-памяти на одном n-p-n транзисторе. Ячейки подобного типа чаще всего применялись во flash-памяти с NOR архитектурой, а также в микросхемах EPROM.

Поведение транзистора зависит от количества электронов на "плавающем" затворе. "Плавающий" затвор играет ту же роль, что и конденсатор в DRAM, т. е. хранит запрограммированное значение.

Помещение заряда на "плавающий" затвор в такой ячейке производится методом инжекции "горячих" электронов (CHE - channel hot electrons), а снятие заряда осуществляется методом квантомеханического туннелирования Фаулера-Нордхейма (Fowler-Nordheim [FN]).

При чтении, в отсутствие заряда на "плавающем" затворе, под воздействием положительного поля на управляющем затворе, образуется n-канал в подложке между истоком и стоком, и возникает ток.

Наличие заряда на "плавающем" затворе меняет вольт-амперные характеристики транзистора таким образом, что при обычном для чтения напряжении канал не появляется, и тока между истоком и стоком не возникает.

При программировании на сток и управляющий затвор подаётся высокое напряжение (причём на управляющий затвор напряжение подаётся приблизительно в два раза выше). "Горячие" электроны из канала инжектируются на плавающий затвор и изменяют вольт-амперные характеристики транзистора. Такие электроны называют "горячими" за то, что обладают высокой энергией, достаточной для преодоления потенциального барьера, создаваемого тонкой плёнкой диэлектрика.

При стирании высокое напряжение подаётся на исток. На управляющий затвор (опционально) подаётся высокое отрицательное напряжение. Электроны туннелируют на исток.

Эффект туннелирования - один из эффектов, использующих волновые свойства электрона. Сам эффект заключается в преодолении электроном потенциального барьера малой "толщины". Для наглядности представим себе структуру, состоящую из двух проводящих областей, разделенных тонким слоем диэлектрика (обеднённая область). Преодолеть этот слой обычным способом электрон не может - не хватает энергии. Но при создании определённых условий (соответствующее напряжение и т.п.) электрон проскакивает слой диэлектрика (туннелирует сквозь него), создавая ток.

Важно отметить, что при туннелировании электрон оказывается "по другую сторону", не проходя через диэлектрик. Такая вот "телепортация".

Различия методов тунеллирования Фаулера-Нордхейма (FN) и метода инжекции "горячих" электронов:

· Channel FN tunneling - не требует большого напряжения. Ячейки, использующие FN, могут быть меньше ячеек, использующих CHE.

· CHE injection (CHEI) - требует более высокого напряжения, по сравнению с FN. Таким образом, для работы памяти требуется поддержка двойного питания.

· Программирование методом CHE осуществляется быстрее, чем методом FN.

Следует заметить, что, кроме FN и CHE, существуют другие методы программирования и стирания ячейки, которые успешно используются на практике, однако два описанных нами применяются чаще всего.

Процедуры стирания и записи сильно изнашивают ячейку флэш-памяти, поэтому в новейших микросхемах некоторых производителей применяются специальные алгоритмы, оптимизирующие процесс стирания-записи, а также алгоритмы, обеспечивающие равномерное использование всех ячеек в процессе функционирования.

Некоторые виды ячеек флэш-памяти на основе МОП-транзисторов с "плавающим" затвором:

· Stacked Gate Cell - ячейка с многослойным затвором. Метод стирания - Source-Poly FN Tunneling, метод записи - Drain-Side CHE Injection.

· SST Cell, или SuperFlash Split-Gate Cell (Silicon Storage Technology - компания-разработчик технологии) - ячейка с расщеплённым затвором. Метод стирания - Interpoly FN Tunneling, метод записи - Source-Side CHE Injection.

· Two Transistor Thin Oxide Cell - двухтранзисторная ячейка с тонким слоем окисла. Метод стирания - Drain-Poly FN Tunneling, метод записи - Drain FN Tunneling.

Другие виды ячеек:

Кроме наиболее часто встречающихся ячеек с "плавающим" затвором, существуют также ячейки на основе SONOS-транзисторов, которые не содержат плавающего затвора. SONOS-транзистор напоминает обычный МНОП (MNOS) транзистор. В SONOS-ячейках функцию "плавающего" затвора и окружающего его изолятора выполняет композитный диэлектрик ONO. Расшифровывается SONOS (Semiconductor Oxide Nitride Oxide Semiconductor) как Полупроводник-Диэлектрик-Нитрид-Диэлектрик-Полупроводник. Вместо давшего название этому типу ячейки нитрида в будущем планируется использовать поликристаллический кремний.

Многоуровневые ячейки (MLC - Multi Level Cell).

В последнее время многие компании начали выпуск микросхем флэш-памяти, в которых одна ячейка хранит два бита. Технология хранения двух и более бит в одной ячейке получила название MLC (multilevel cell - многоуровневая ячейка). Достоверно известно об успешных тестах прототипов, хранящих 4 бита в одной ячейке. В настоящее время многие компании находятся в поисках предельного числа бит, которое способна хранить многоуровневая ячейка.

В технологии MLC используется аналоговая природа ячейки памяти. Как известно, обычная однобитная ячейка памяти может принимать два состояния - "0" или "1". Во флэш-памяти эти два состояния различаются по величине заряда, помещённого на "плавающий" затвор транзистора. В отличие от "обычной" флэш-памяти, MLC способна различать более двух величин зарядов, помещённых на "плавающий" затвор, и, соответственно, большее число состояний. При этом каждому состоянию в соответствие ставится определенная комбинация значений бит.

Во время записи на "плавающий" затвор помещается количество заряда, соответствующее необходимому состоянию. От величины заряда на "плавающем" затворе зависит пороговое напряжение транзистора. Пороговое напряжение транзистора можно измерить при чтении и определить по нему записанное состояние, а значит и записанную последовательность бит.

Основные преимущества MLC микросхем:

§ Более низкое соотношение $/МБ

§ При равном размере микросхем и одинаковом техпроцессе "обычной" и MLC-памяти, последняя способна хранить больше информации (размер ячейки тот же, а количество хранимых в ней бит - больше)

§ На основе MLC создаются микросхемы большего, чем на основе однобитных ячеек, объёма

Основные недостатки MLC:

§ Снижение надёжности, по сравнению с однобитными ячейками, и, соответственно, необходимость встраивать более сложный механизм коррекции ошибок (чем больше бит на ячейку - тем сложнее механизм коррекции ошибок)

§ Быстродействие микросхем на основе MLC зачастую ниже, чем у микросхем на основе однобитных ячеек

§ Хотя размер MLC-ячейки такой же, как и у однобитной, дополнительно тратится место на специфические схемы чтения/записи многоуровневых ячеек

Технология многоуровневых ячеек от Intel (для NOR-памяти) носит название StrtaFlash, аналогичная от AMD (для NAND) - MirrorBit

Архитектура флэш-памяти.

Страницы: 1, 2, 3, 4



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.