на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Математические основы информатики
p align="left">На упрощённой схеме части города (графе) мостам соответствуют линии (рёбра графа), а частям города -- точки соединения линий (вершины графа). В ходе рассуждений Эйлер пришёл к следующим выводам:

* Число нечётных вершин (вершин, к которым ведёт нечётное число рёбер) графа всегда чётно. Невозможно начертить граф, который имел бы нечётное число нечётных вершин.

* Если все вершины графа чётные, то можно, не отрывая карандаша от бумаги, начертить граф, при этом можно начинать с любой вершины графа и завершить его в той же вершине.

* Граф с более чем двумя нечётными вершинами невозможно начертить одним росчерком.

Граф кёнигсбергских мостов имел четыре нечётные вершины, следовательно невозможно пройти по всем мостам, не проходя ни по одному из них дважды Если не прибегнуть к хитрости спрыгнуть в воду и доплыть до противоположного берега, что позволит решить задачу с мостами, но, к сожалению, изменит условие задачи с графами... .

Рис. 3. Упрощённая схема мостов Кёнигсберга. Значение букв и цифр -- см. Рис.2 - комментарий к старинной карте Кёнигсберга

Рис. 4. Граф кёнигсбергских мостов

Созданная Эйлером теория графов нашла очень широкое применение: например, её используют при изучении транспортных и коммуникационных систем, в частности, для маршрутизации данных в Интернете.

Проблема четырёх красок -- математическая задача, предложенная Ф. Госри (англ. Francis Guthrie) в 1852 году.

Выяснить, можно ли всякую, расположенную на сфере карту, раскрасить четырьмя красками так, чтобы любые две области, имеющие общий участок границы в виде дуги, были раскрашены в разные цвета.

К. Аппель и В. Хакен доказали в 1976 г., что так можно раскрасить любую карту. Это была первая крупная математическая теорема, для доказательства которой был применён компьютер. Не смотря на последующие упрощения, доказательство практически невозможно проверить не используя компьютер.

Раскрашивая географическую карту естественно пользоваться по возможности меньшим количеством цветов, однако так, чтобы две страны, имеющие общую часть границы (не только общую точку), были окрашены по-разному. В 1852 году Френсис Гутри (Guthrie), составляя карту графств Англии, обратил внимание, что для такой цели вполне хватает четырех красок. Его брат, Фредерик, сообщил об этом наблюдении известному математику О. Де Моргану (DeMorgan), а тот - математической общественности. Точная формулировка гипотезы опубликована А. Кэли (Cayley, 1878).

Первое доказательство появилось год спустя и принадлежало В. Кемпе (Kempe). Одиннадцать лет спустя П. Хивуд (Heawood) обнаружил в нем ошибку Однако из доказательства Хивуд понял, что пяти красок действительно достаточно. Тем не менее для любой конкретной карты хватало четырех красок!. За первым ошибочным доказательством последовало множество других. В этом отношении проблема четырех красок уступала лишь знаменитой проблеме Ферма. До середины XX века, хотя проблемой четырех красок занимались многие выдающиеся математики, положение с доказательством изменилось несущественно: идеи Дж. Д. Биркгофа позволили П. Франклину в 1913 году доказать гипотезу для карты с не более чем 25 странами. Позже это число было увеличено до 38.

В 1977 году доказательство гипотезы четырех красок было наконец получено К. Аппелем и У. Хакеном (Appel, Haken) и опубликовано в двух статьях. Значительную часть рутинных проверок выполнил компьютер, и это революционное нововведение в сложившуюся практику дедуктивных рассуждений в чистой математике служит основанием для некоторого естественного скептицизма по отношению к данному доказательству и по сей день. Сначала мы приведем точные формулировки, докажем теорему о пяти красках и укажем некоторые эквивалентные проблемы.

Проблемы раскраски карты на глобусе и плоскости эквивалентны. Действительно, в случае карты на сфере можно вырезать кусок внутренней области какой-либо страны; продырявленную сферу можно деформировать (растянуть) в плоскую область - представим, что карта сделана из тонкой резины. На плоской карте отверстие превратится в "океан", омывающий со всех сторон одну страну. Разумеется, длины границ, их форма, размеры стран подвергнутся при растяжении значительным изменениям, но сетка границ останется, добавится лишь растянутая граница прорезанного отверстия, внешняя граница океана. Ее можно убрать, то есть раскрасить океан так же, как и окруженную им страну. Такие деформации стран и их границ, очевидно, не меняют задачи раскраски. Ниже рассматривается плоская карта.

Начнем с того, что заменим задачу раскраски плоской карты на эквивалентную ей проблему, касающуюся плоских графов. Выберем столицу у каждой страны (то есть выберем по одной внутренней точке в каждой из стран) и соединим дугами столицы стран, имеющих общий сегмент границы. В результате получится так называемый плоский граф.

Определение 1. Графом G называется конечное множество вершин V(G) и конечное множество ребер R(G ), так что каждое ребро имеет своими концами две различные вершины. Граф называется плоским, если вершины являются точками плоскости, а ребра - ломаными линиями (составленными из отрезков) в этой же плоскости, имеющими своими концами вершины, не пересекающимися между собой и не включающими других вершин, кроме своих концов.

Отметим, что в плоском графе не допускаются петли (ребра, имеющие началом и концом одну и ту же вершину).

Плоский граф разрезает плоскость на совокупность D(G) неперекрывающихся многоугольных областей, необязательно конечных (рис. 5).

Рис. 5. 4-раскраска плоского графа

Если перенумеровать используемые краски 1, 2, ..., n, то на соответствующем карте плоском графе этими числами окажутся занумерованы вершины / столицы.

Определение 2. Правильной n-раскраской плоского графа G называется отображение f: V(G ) {1, 2, ..., n}, причем f(u1) # f(u2) в случае, если существует такое ребро r k R(G ), что граница r состоит из u1 и u2 .

Наконец, можно сформулировать проблему четырех красок в виде следующего утверждения.

Теорема 1. Любой плоский граф допускает правильную 4-раскраску.

Вот решение этой-то проблемы и заняло более столетия. Однако на первый взгляд чуть более слабое утверждение о правильной 5-раскраске доказать достаточно просто. Для доказательства понадобится формула Эйлера, связывающая число вершин, ребер и областей. Пусть | M | обозначает число элементов конечного множества M.

Теорема Эйлера. Для любого плоского графа | V(G) | - | R(G) | + | D(G) | = 2.

Заметим, что если не учитывать внешнюю бесконечную область, то формула Эйлера для триангуляции конечного плоского графа имеет вид | V(G ) | - | R(G ) | + + | D(G ) | = 1.

Теорема 2. Любой плоский граф допускает правильную 5-раскраску.

Доказательство. Сначала упростим граф. Если есть несколько ребер, соединяющих некоторую пару вершин (такая ситуация может возникнуть, если две страны имеют несколько несвязанных между собой кусков границы, например как у России и Китая), то оставим только одно ребро: правильность раскраски такого уменьшенного графа все равно гарантирует правильную раскраску исходного.

Проведем теперь индукцию по числу вершин графа. Для графа с тремя вершинами утверждение теоремы очевидно. Пусть оно справедливо для всех графов с n - 1 вершиной.

Пусть D1 , D2 , ..., Dm - полный набор всех m = D(G ) областей графа, а N(Di) - число ребер, составляющих границу i-й области графа. При этом N(Di) 3 для любого i. Любое ребро входит в границу в точности двух областей, поэтому

N(D1) + N(D2)+ ... +N(Dm) = 2R(G ).

Вследствие неравенств N(Di) 3 имеем

2R(G ) = N(D1) + N(D2) + ... + N(Dm) 3m = 3D(G ),

откуда 2R(G ) 3D(G ).

По формуле Эйлера | V(G ) | - 2 + | D(G ) | = | R(G ) |, откуда

3 | R(G ) | = 3 | V(G ) | - 6 + 3 | D(G ) | 3 | V(G ) | - 6 + 2 | R(G ) |

и, следовательно,

| R(G ) | 3 | V(G ) | - 6.

Заметим, что удвоенное число ребер можно отождествить и с другой характеристикой графа. Пусть a1 , a2 , ... ..., an есть полный набор n = V(G ) вершин графа, а M(aj) - число ребер, сходящихся в вершине с номером j. Но каждое ребро заканчивается двумя вершинами, поэтому

2R(G) = M(a1) + M(a2) + ... + M(an).

Кроме того, как это следует из неравенства (1), 2 | R(G ) | 6 | V(G ) | - 12. Следовательно,

M(a1) + M(a2) + ... + M(an) 6 | V(G ) | - 12.

Из последнего неравенства можно вывести, что существует по крайней мере одна вершина, в которой сходится не более пяти ребер. Действительно, предположим противное, то есть "j M(aj) 6. Тогда

M(a1) + M(a2) + ... + M(an) 6n = 6V(G ),

что противоречит (2).

Перенумеруем вершины так, что в вершине a = an сходится не более пяти ребер.

Если в вершине a сходятся не более четырех ребер, то рассмотрим граф G \ a, который получается из G устранением вершины a и всех оканчивающихся в ней ребер. Граф G \ a допускает правильную 5-раскраску по предположению индукции. А так как ребра соединяют вершину a не более чем с четырьмя вершинами этого меньшего графа, то для правильной раскраски a остается по крайней мере один цвет (из пяти).

Пусть теперь в a сходится ровно пять ребер. Рассмотрим граф H G, состоящий из тех пяти вершин, куда приходят ребра, выходящие из a и соединяющих их (в G) ребер. В графе H обязательно найдутся две вершины, не соединенные ребром. Действительно в противном случае в пятиугольнике H будет C52= 10 ребер (это нетрудно посчитать и непосредственно). Однако в силу (1)

| R(H ) | 3| V(H ) | - 6 = 3 " 5 - 6 = 9,

и мы приходим к противоречию.

Пусть b и g суть те вершины H, которые не соединены между собой. Не соединены они и в G \ a. Рассмотрим граф G ', который получается из G \ a при помощи деформации, которая отождествляет (совмещает) b и g. Граф G ' - это плоский граф, так как при отождествлении вершин в этой ситуации не может возникнуть петли. Но для G ' справедливо предположение индукции, и существует некоторая его правильная 5-раскраска j. Разъединим в этом раскрашенном графе вершины b и g. Тогда правильную 5-раскраску получает и граф G \ a, причем такую, что j(b) = j(g). Иными словами, b и g раскрашены одинаково и, следовательно, раскраска пяти соседних с a вершин графа H использует не более четырех цветов.

Используем оставшийся цвет для раскраски вершины a и получим правильную 5-раскраску G!

Проблема четырех красок кажется на первый взгляд изолированной задачей, мало связанной с другими разделами математики и практическими задачами. На самом деле это не так. Известно более 20 ее переформулировок, которые связывают эту проблему с задачами алгебры, статистической механики и задачами планирования. И это тоже характерно для математики: решение задачи, изучаемой из чистого любопытства, оказывается полезным в описании реальных и совершенно различных по своей природе объектов и процессов. Здесь мы рассмотрим одну задачу, эквивалентную проблеме четырех красок.

Пусть i, j и k суть стандартные единичные направляющие векторы координатных осей x, y и z соответственно. В трехмерном пространстве определено векторное произведение векторов, обозначаемое знаком i. Если u, u k R3 - два вектора, то их векторное произведение u i u имеет длину а направление определяется по правилу буравчика или правой руки. Легко убедиться в том, что это произведение не ассоциативно, то есть произведение u1 i u2 i ... i un , вообще говоря, не определено, если в нем не расставлены скобки. Действительно, например, 0 = i i (j i j) (i i j) i j = - i. Для того чтобы выражение u1 i u2 i ... i un имело определенный смысл, в нем нужно правильным образом расставить n - 2 пары скобок. Такое выражение со скобками называется ассоциацией.

Теорема 3. Для каждой пары ассоциаций, связанных с выражением u1 i u2 i ... i un , существует такая подстановка {u1 , u2 , ..., un} {i, j, k} (то есть {i, j, k} подставляются каким-то образом вместо всех uk), что значения ассоциаций будут равны между собой и отличны от нуля.

Утверждение касается только векторов в трехмерном пространстве и кажется простым, но доказать его так же трудно, как и теорему о 4-раскраске. Доказательство эквивалентности последней теоремы проблеме четырех красок дано Л. Кауфманом и объяснено на пальцах. Здесь мы только коротко объясним связь этих задач.

Во-первых, причем здесь графы? Графически ассоциацию можно представлять себе в виде дерева, то есть графа специального вида, устроенного следующим образом. Произведению всякой пары u i u соответствует пара ребер (веток), имеющих общую вершину, при этом концы ветвей соответствуют сомножителям, а общее начало - произведению. Шаг за шагом выполняя действия, предписанные в ассоциации скобками, приходим к корню этого дерева, соответствующему результату выполнения всех перемножений в заданной ассоциации. В верхней части рис. 2 представлены деревья, определяемые ассоциациями (u1 i u2) i (u3 i u4) (внизу, ветвями вверх) и (((u1 i u2) i u3) i u4) (вверху, ветвями вниз).

Склеим теперь оба эти дерева по концам веток (концы соответствуют всем элементам ассоциации u1 , u2 , u3 , u4) и затем соединим корни обоих деревьев дополнительным ребром. Получится плоский граф, изображенный в нижней части рис. 6. Отметим два специфических свойства такого графа: в любой его вершине сходится ровно три ребра (это свойство называется кубичностью графа). Удаление любого ребра не приводит к разделению графа на две не связанные между собой компоненты (это свойство назовем отсутствием разделяющего ребра).

Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.