на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Оптимальный раскрой материала с максимальной прибылью

Оптимальный раскрой материала с максимальной прибылью

Содержание

Введение

1. Постановка и анализ задачи

2. Решение задачи

3. Описание алгоритма

4. Описание программы

5. Контрольный пример

Вывод

Текст программы

Литература

1. Введение

Обычно при производстве изделий материал поступает в виде рулонов, полос, прямоугольных листов, стержней и т. д. Поступающий материал раскраивается на части заданных размеров и определенной конфигурации, представляющие собой в одних случаях заготовки, в других -- готовые детали. К задачам раскроя, относятся и задачи плотного размещения совокупности предметов на заданных участках.

Задачи рационального раскроя описываются сходными математическими моделями. Существенное различие этих моделей определяется главным образом двумя факторами:

1) конфигурацией получаемых при раскрое заготовок;

2) объемом выпускаемой продукции.

Задачи раскроя, определяемые первым фактором, подразделяют на два класса. К первому классу относятся задачи фигурного раскроя, ко второму -- задачи нефигурного раскроя. При фигурном раскрое материал раскраивается на заготовки самых различных конфигураций. К классу задач нефигурного раскроя относятся задачи линейного и прямоугольного раскроя. В первом случае материал раскраивают на заготовки различной длины, для которых задается только один линейный размер. Во втором случае получают заготовки прямоугольной формы, для которых задаются два размера.

Задачи раскроя, определяемые вторым фактором, также подразделяют на два класса: задачи раскроя в условиях массового (крупносерийного) выпуска изделий и задачи раскроя в условиях единичного (мелкосерийного) производства. К обоим классам могут принадлежать как задачи фигурного, так и задачи нефигурного раскроя. Задачи раскроя в условиях массового производства описываются непрерывными моделями линейного программирования, а в условиях единичного производства -- целочисленными. В связи с этим задачи раскроя в указанных условиях часто называют соответственно непрерывными и целочисленными.

Задачи рационального раскроя в условиях массового производства относятся к классу задач линейного программировании, с неявно заданными столбцами (способами раскроя). При решении таких задач методами линейного программирования возникает необходимость в генерировании раскроев на каждом шаге процесса. Ниже рассмотрена задача генерирования линейных раскроев.

1. Постановка и анализ задачи

Решить задачу гильотинного раскроя материала (длинномерного проката) с максимальной прибылью: кусок материала длиной L раскраивается на заготовки m наименований, для каждой заготовки с номером i = известны ее длина li и оценка сi. Требуется найти раскрой с максимальной оценкой получаемого набора заготовок.

Задача оптимального раскроя длинномерного проката носит различный характер в зависимости от типа производства. Например, для крупносерийного производства характерны следующие задачи: стремление получить значительное число заготовок одинаковой длины, минимизировать остаток, получить максимальную прибыль от раскроя и т.д. В данной курсовой работе будет рассмотрено решение задачи оптимального раскроя материала с максимальной прибылью методом динамического программирования с использованием так называемой "сеточным методом", при котором возникает необходимость генерирования раскроев на каждом шаге процесса.

2. Решение задачи

Предположим, что кусок материала длиной L раскраивается на заготовки m наименований. Для каждой заготовки с номером i = известны ее длина li и оценка сi. Требуется найти раскрой с максимальной оценкой получаемого набора заготовок.

Раскрой может содержать любое число каждой из заготовок. Тогда набор заготовок характеризуется m-мерным вектором

X = (x1, x2, … , xm), (1)

Элементы которого представляют собой целые неотрицательные компоненты, указывающие на число заготовок каждого вида. При этом требуется максимизировать суммарную оценку

(2)

набора заготовок (1) при единственном линейном ограничении

.(3)

Генерирование раскроя будем рассматривать как многошаговый циклический процесс, состоящий из последовательного выбора отдельных заголовок.

Для решения поставленной задачи рассмотрим функцию

(4)

xXl

где через Xi обозначено множество неотрицательных векторов х, отвечающих раскроям, в которых общая длина заготовок не превосходит длины l. Пусть l0 = min li, где i =1…m.

Тогда при всех l[0,l0] соответствующие множества Xl состоят из одного нулевого элемента и, следовательно, f(l) = 0 для всех таких l. Для l[0,L0], справедливы следующие рекуррентные соотношения:

,(5)

iIl

где через Il обозначено множество тех i, при которых lil.

Опираясь на рекуррентные соотношения (5), можно для решения задачи предложить простой численный метод, представляющий собой перебор всех допустимых раскроев. Реализация всего процесса основывается на двух этапах:

Первый этап

На первом этапе осуществляется так называемый прямой ход: по формулам (5) для всех l = последовательно вычисляются функции f(l) и при этом фиксируются индексы i(l), при которых достигается максимум в выражении (5). Получаемая при этом информация l, f(l) и i(l) запоминается и построчно записывается в таблицу:

l

l0

l0 + 1

l0 + 2

L

f(l)

f(l0)

f(l0 + 1)

f(l0 + 2)

f(L)

i(l)

i(l0)

i(l0 + 1)

i(l0 + 2)

i(L)

Второй этап

На втором этапе осуществляется так называемый обратный ход: для получения искомого вектора х (1), для которого выполняется равенство (x) = f(L), в раскрой в первую очередь включаются заготовка с номером i(l1), где l1 = L, и подсчитывается значение l2= l1-li(l1).

Если l2l0, то в раскрой включается заготовка с номером i(l2) и подсчитывается значение l3=l2-li(l2) и т.д. Так как при каждом k1 очевидно, что lk+1lk-l0, то через конечное число описанных шагов окажется, что lk+1< l0. На этом генерирование искомого раскроя заканчивается и выводится результат.

3. Описание алгоритма

1. Определяется текущее значение длины раскроя l от минимальной длины детали до длины материала.

2. Вычисляется максимальный индекс (номер) детали, добавление которой возможно.

3. Если нет деталей, которые можно добавить в раскрой, то проверяется не достигнут ли максимум цены раскроя для текущего значения длины раскроя l.

Если максимум достигнут, то он запоминается. Последняя добавленная деталь удаляется из раскроя и добавляется следующая (п. 4). Если нет деталей которые можно добавить в раскрой, происходит выход из цикла.

4. Запоминается текущий раскрой. Длина раскроя уменьшается на длину детали. Цена раскроя увеличивается на цену детали. Определяются детали, добавление которых в раскрой возможно (п. 2).

5. Берется начальная длина раскроя, равная длине материала. Берется деталь, на которой был достигнут максимум для данной длины материала. Из длины материала вычитается длина детали, к стоимости раскроя прибавляется цена детали. П.5 повторяется, пока есть детали, добавление которых к раскрою не превысит длины материала.

6. Зная количество деталей для каждого их вида, составляющих рациональный раскрой, формируется искомый вектор х.

//процедура вычисления рационального раскроя

procedure searchRationalCut(

materialLength: integer;

detailAmount: integer;

var details: array of TDetail;

var x: array of integer);

var

l0, l, i: integer;

currCut: TCutRecord;

maxCut: TCutRecord;

cutRecords: array[0..MAX_CUTRECORD_AMOUNT-1] of TCutRecord;

cutRecords1: array[1..MAX_CUTRECORD_AMOUNT] of TCutRecord;

i1, j1: integer;

begin

l0:=details[0].l;

for l:=l0 to materialLength do

begin

currCut.l:=l;

currCut.c:=0;

currCut.i:=0;

currCut.max_i:=-1;

maxCut.l:=0;

maxCut.c:=0;

maxCut.i:=0;

maxCut.max_i:=0;

j1:=0;

while true do

begin

if currCut.max_i=-1 then

begin

for i1:=0 to detailAmount-1 do

begin

if details[i1].l<=currCut.l then

begin

currCut.max_i:=i1;

currCut.i:=0;

end;

end;

end;

if (currCut.max_i=-1) or (currCut.i>currCut.max_i) then

begin

if j1<>0 then

begin

if currCut.c>maxCut.c then

begin

maxCut:=currCut;

end;

currCut:=cutRecords1[j1];

j1:=j1-1;

currCut.i:=currCut.i+1;

end

else

begin

break;

end;

end

else

begin

if (currCut.l>=l0) and (currCut.l<l) then

begin

if cutRecords[currCut.l].c+currCut.c>maxCut.c then

begin

maxCut:=cutRecords[currCut.l];

maxCut.c:=maxCut.c+currCut.c;

end;

currCut.i:=currCut.i+1;

continue;

end;

j1:=j1+1;

cutRecords1[j1]:=currCut;

currCut.l:=currCut.l-details[currCut.i].l;

currCut.c:=currCut.c+details[currCut.i].c;

currCut.max_i:=-1;

end;

end;

cutRecords[l]:=maxCut;

cutRecords[l].l:=l;

end;

for i:=0 to detailAmount-1 do

begin

x[i]:=0;

end;

l:=materialLength;

while l>=details[0].l do

begin

x[cutRecords[l].i]:=x[cutRecords[l].i]+1;

l:=l-details[cutRecords[l].i].l;

end;

end;

4. Описание программы

Вид главного окна программы приведено на рисунке:

После запуска программы пользователю предлагается ввести длину материала и количество типов деталей, затем нужно заполнить поля таблицы с длиной и стоимостью каждой детали.

После ввода данных для решения нужно нажать кнопку "Вычислить", программа выдаст результат в виде таблицы с оптимальными значениями количества типов деталей. Также выводится общая оценка раскроя, остаток материала и наглядная карта раскроя проката в графической форме. Белые части раскроя обозначают типы деталей, красные линии - линии отреза материала. В случае остатка, соответствующая часть раскроя отображается серым цветом:

5. Контрольный пример

Пусть в задаче генерирования линейного раскроя заданы следующие параметры: длина проката L = 40, количество типов деталей m = 4, а значения длин li и стоимости ci каждой детали приведены в таблице:

i

1

2

3

4

li

7

11

13

17

ci

9

14

16

22

Решаем задачу сеточным методом: сначала выполняем прямой ход. Выбираем начальное значение длины раскроя, равное минимальной длине детали: l0 = min li = 7 и последовательно "шагаем" до конца проката, т.е. 40.

Чтобы найти максимальную стоимость на каждом шаге, мы перебираем все детали, которые могут поместиться в текущий раскрой, начиная с минимальной по длине. Для подсчета стоимости раскроя на текущем шаге мы вычитаем длину очередной выбранной детали из текущего раскроя и по таблице находим раскрой с длиной, равной полученному остатку и суммируем его оценку с оценкой выбранной детали. Из вычисленных оценок выбираем максимальную и заносим её в таблицу, вместе с номером детали, при которой эта оценка была получена.

Далее в таблице приведены результаты первого этапа (прямого хода) процесса:

l

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

f(l)

9

9

9

9

14

14

16

18

18

18

22

23

23

25

27

28

28

i(l)

1

1

1

1

2

2

3

1

1

1

4

1

1

1

1

2

2

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.