на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Разработка автоматизированной системы управления многоступенчатых, регенеративных прогревателей питательной воды
p align="left"> Нахождение присоединенной матрицы:

;

;

;

;

;

;

;

;

.

Присоединенная матрица имеет вид:

Тогда обратная матрица:

Передаточная матрица вход-состояние примет вид:

Передаточная матрица вход-выход имеет вид:

Тогда:

3 ОЦЕНКА НАБЛЮДАЕМОСТИ, УПРАВЛЯЕМОСТИ И УСТОЙЧИВОСТИ

ММ системы в общем виде:

Так как устойчивость, управляемость и наблюдаемость МПТ определяется только для входного воздействия , то:

Следовательно:

ПФ системы по входному воздействию :

Устойчивость - свойство системы, характеризующее ее способность возвращаться в исходное состояние при снятии с системы возмущающего воздействия, которое вывело ее из этого состояния.

Определим устойчивость разомкнутой системы по критерию Рауса-Гурвица. При положительности коэффициентов характеристического полинома необходимым и достаточным условием устойчивости системы является положительность определителей.

Представим ПФ в виде:

Определитель Гурвица для данной системы:

- положителен;

- положителен;

- положителен.

По определению если коэффициенты характеристического полинома и определители положительные, то система устойчивая. Следовательно: система устойчивая.

Управляемость - выяснение возможности системы переходить в любое заданное состояние при воздействии на него задающим сигналом ограниченной амплитуды.

Система называется полностью управляемой по состоянию (выходу), если изначальное состояние соответствует любому t0 она может быть переведена в любое качественное состояние за конечное время, ограниченным входным сигналом .

Для того чтобы система была управляема по входу необходимо и достаточно, что бы ранк матрицы управляемости был равен размерности вектора .

Ранк определяется порядком старшего минора, не равного нулю.

Можно сделать вывод, что система по входу полностью управляема.

Определим управляемость системы по выходу.

Здесь для управляемости системы ранк матрицы должен равняться количеству выходов.

Выход так же один (частота вращения щ), поэтому система по выходу так же управляема.

Наблюдаемость - это вычисление вектора состояния по измеренным значениям выходных координат.

Матрица наблюдаемости:

Для того чтобы система была наблюдаема необходимо и достаточно, что бы ранг матрицы наблюдаемости был равен размерности вектора .

Ранк определяется порядком старшего минора, не равного нулю.

Можно сделать вывод, что система наблюдаемая.

4 СИНТЕЗ РЕГУЛЯТОРА СКОРОСТИ В СИСТЕМЕ «МАШИНА ПОСТОЯННОГО ТОКА - ВЕНТЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ»

Цель синтеза - построение системы управления ТО, выходные управляемые координаты которого ковариантные с заданием и инвариантные к возмущающему, обеспечивающий устойчивость и робастность системы в целом.

Система управления обеспечивает ковариантность управляемой величины с заданием. Система регулирования обеспечивает инвариантность к возмущению, поэтому основная задача синтеза оптимальных алгоритмов управления - построение ММ системы управления, обеспечивающей воспроизведение заданного воздействия, а регулирование - подавление возмущающего с учетом случайного неконтролируемого их характера и неточности задания ММ объекта или возможного случайного ее изменения.

Для решения задачи синтеза находят применение методы классического вариационного счисления, динамического программирования, принцип Максина - Панкрягина.

Для синтеза регуляторов в ТАУ и ее приложениях разработаны методы:

· синтез систем автоматического регулирования по АЧХ;

· метод динамической компенсации;

· метод уравнений синтеза;

· аналитическое конструирование регуляторов;

· модальное управление;

· метод расширенных АЧХ;

· метод последовательной коррекции с подчиненным регулированием координат.

В постановках задач синтеза САУ задается множество систем, на котором проводится выбор системы или некоторого подмножества систем, удовлетворяющих заданным показателям качества. Требования поведения систем задается как множество эталонных систем, поведение которых отвечает заданному поведению САУ в установившемся и переходном режиме. Описание подмножества строится на поведенческом языке, определяющего качественно и количественно свойства САУ: устойчивость, ковариантность, точность, инвариантность, робастность, быстродействие.

Синтез САУ обеспечивает 2 задачи:

· формирование множества эталонных систем с заданными свойствами;

· выбор САУ и расчет параметров соответствующей эталонной системы.

Средствами решения задач синтеза является:

· выбор топологии причинно-следственных связей САУ;

· выбор структур операторов элементов (алгоритмов управляющих или регулирующих устройств);

· расчет значений параметров САУ (значение параметров управляющих или корректирующих устройств).

4.1 Синтез САУ методом динамической компенсации

Синтез регулятора предполагает компенсацию динамики объекта. Основным содержанием принципа динамической компенсации является возможность не учитывать динамику объекта при синтезе регулятора. Формальное выражение для компенсатора дает точное решение задач синтеза регулятора. Но в инженерных расчетах это выражение не верно и сводится к той или иной форме аппроксимации.

Дано:

1. ПФ объекта управления:

2. Структура замкнутой САУ с последовательным включением с ОУ в прямой цепи контура управления компенсирующего регулятора:

Рисунок 7

3. Требуемы показатели качества:

Перерегулирование, %

Время регулирования, с

Порядок астатизма1

Определить:

1. Эталонный оператор системы, который обеспечивает заданные показатели качества;

2. Структурный и параметрический синтез компенсирующего регулятора.

1 этап:

Определение структуры и параметров регулятора.

При определении следует соблюсти соотношение:

Для обеспечения астатизма первого порядка () приравняем:

Тогда:

Здесь:

2 этап:

Структурный и параметрический синтез.

Запишем ПФ компенсатора в следующем виде:

3 этап:

Моделирование синтезированной САУ.

Запишем ПФ ОУ в виде:

Рисунок 8

Составим дифференциальные уравнения по схеме, изображенной на рисунке 8:

По данным ДУ составим структурную схему ММ в пространстве состояний в нормальной форме:

Рисунок 9

Составленная по данной структурной схеме ММ выглядит следующим образом:

Моделирование синтезированной системы дает положительный результат, то есть необходимы показатели качества достигнуты. По данной ММ построены временные и частотные характеристики, оценены показатели качества в приложении 1.

4.2 Синтез САУ методом последовательной коррекции с подчиненным регулированием координат

Основу метода последовательной коррекции с подчинённым регулированием координат составляют два принципа.

Первый принцип - принцип подчинённого каскадного включения регуляторов отдельных координат состояния заключается в выборе замкнутых внутренних контуров регулирования, подчинённых общей задаче регулирования управляемой координаты. При этом выбор замкнутых внутренних контуров производится из условия формирования такой передаточной функции объекта управления в каждом контуре, при которой синтез последовательно включенных регуляторов контуров возможен в классе типовых линейных законов управления ограниченной сложности.

Второй принцип - принцип последовательной компенсации средних и больших постоянных времени контуров регулирования основан на последовательной замене исходного разомкнутого контура регулирования последовательностью результирующих контуров с желаемыми передаточными функциями. Выбор разомкнутых контуров в виде последовательного соединения интегрирующего и апериодического звена с малой некомпенсируемой постоянной времени обеспечивает высокую точность (астатическое регулирование) и высокое быстродействие системы.

В качестве внутренних регулируемых координат состояния при управлении в ВЭМС выбирают токи, напряжения и частоту питания и на выходе НПЭ, потокосцепления ЭМП, угловую скорость и момент на валу ЭМП, положение вала приводного механизма и др., что позволяет вводить независимые ограничения на эти координаты.

Для начала необходимо упростить структурную схему системы "Вентильный преобразователь - машина постоянного тока", показанную на рисунке 10. Для этого пренебрегаем обратной связью в цепи с МПТ.

Рисунок 10

Для первого контура входным является напряжение на входе в ВП , а выходным - ток цепи якоря . Постоянная времени ВП является некомпенсируемой, так как она намного меньше остальных постоянных времени. Структурная схема будет выглядеть так:

Рисунок 11

Желаемая ПФ данного контура с обеспечением заданных показателей качества будет следующей:

Здесь а1 - параметр, влияющий на перерегулирование. Для обеспечения этот параметр принимает значение 2.

Для нахождения ПФ первого регулятора произведем следующие действия:

- пропорциональная часть;

- интегрирующая часть.

Данный регулятор - ПИ-регулятор.

ПФ замкнутого контура представляет собой колебательное звено и может быть аппроксимировано следующим образом:

.

Для второго контура структурная схема выглядит так:

Рисунок 12

Желаемая ПФ второго разомкнутого контура (а2=2):

.

.

Тогда ПФ второго регулятора:

Здесь присутствует только пропорциональная часть:

.

Следовательно, второй регулятор - П-регулятор.

Анализ синтезированной системы будем проводить по следующей структурной схеме, то есть с вновь введенной обратной связью:

Рисунок 13

Здесь:

- выход с первого регулятора;

- напряжение на выходе вентильного преобразователя;

- ток якоря;

- угловая скорость.

Для составления ММ в пространстве состояний необходимо схему на рисунке 13 представить во временной области.

Рисунок 14

Уравнение ММ в пространстве состояний запишем по рисунку 14:

По данной ММ построены временные и частотные характеристики, оценены показатели качества в приложении 2.

4.3 Модальное управление

Модальное управление - это управление посредством динамической обратной связи с матрицей коэффициентов модами (собственными числами, корнями характеристического полинома) для достижения желаемых целей.

Необходимо обеспечить следующий желаемый спектр:

,

где , для обеспечения заданных показателей качества. Тогда:

Исходная система имеет вид:

,

,

,

.

Произведем следующую последовательность действий:

1. Трансформация исходной системы к канонически управляемому базису с вычислением матрицы перехода.

a. Матрица управляемости исходной системы (она была определена выше при определении устойчивости системы).

Как было определено ранее, система управляема.

b. Определяем характеристические полиномы и .

Спектр исходной системы:

,

.

Коэффициенты характеристического полинома:

,

,

.

Для желаемого спектра

:

Коэффициенты характеристического полинома:

,

,

.

c. Составляем сопровождающую матрицу полинома.

,

.

d. Вычисляем матрицу управляемости преобразованной системы.

e. Определяем матрицу перехода.

2. Расчёт параметров модального регулятора преобразованной системы.

,

,

,

3. Переход к исходному базису и расчёт коэффициентов модального регулятора.

,

4. Определение спектра синтезированной системы.

В исходном базисе:

В каноническом базисе:

Коэффициенты характеристических полиномов синтезированной системы в исходном и в канонически управляемом базисе совпадают, что свидетельствует о правильности приведенных преобразований.

В Приложении 3 построены временные и частотные характеристики синтезированной системы.

4.4 Метод синтеза с использованием оптимизационных процедур

Здесь используется приближенное равенство реального выходного сигнала эталонному. В основе реализации этого принципа лежит аппарат нелинейного программирования. Основное содержание состоит в следующем:

Необходимо определить оператор компенсатора:

.

Задаются эталонные воздействия и реакция на это воздействие .

Проблема синтеза состоим в выборе таких значений параметров , которые обеспечивают близость в известном смысле выходного сигнала реальной системы и эталона .

Положим, что мерой близости выбрана метрика пространства

.

Отклонения необходимо свести к минимуму.

Если же воспользоваться метрикой пространства то:

.

По каждым значениям идет оценка.

В функционалы x1 и x2 входит функция .

Для реализации принципа необходимо знать обратный оператор системы, явно зависящий от параметров регулятора. Это чрезвычайно сложная задача, решение которой возможно в исключительно простых случаях.

ЗАКЛЮЧЕНИЕ

В результате проделанной работы, получены характеристики и параметры, позволяющие судить о параметрах синтезированной системы.

Можно сказать, что синтез проведен удачно. Об этом позволяют судить полученные при моделировании временные и частотные характеристики. Заданные показатели качества достигнуты, а именно:

- перерегулирование %;

- время регулирования с.;

- порядок астатизма 1.

Так же надо заметить, что чем меньше время регулировании, тем выше энергетические затраты на разгон двигателя. Очевидно, эта энергия не может быть бесконечной. При определенном значении входного напряжения и тока якорной обмотки может произойти аварийная ситуация. Поэтому при выборе времени регулирования необходимо учитывать и энергетическую сторону процесса.

ЛИТЕРАТУРА

1. Прошин И.А. Управление в вентильно-электромеханических системах. В 3-х кн. Кн. 2. Математическое моделирование вентильно-электромеханических систем. - Пенза: Изд-во Пенз. гос. технолог. акад., 2004. - 307 с.

2. Прошин И.А. Управление в вентильно-электромеханических системах. В 3-х кн. Кн. 1. Непосредственные преобразователи электрической энергии. - Пенза: Изд-во Пенз. гос. технолог. акад., 2004. - 333 с.

3. Прошин И.А. Управление в вентильно-электромеханических системах. В 3-х кн. Кн. 3. Синтез управляемых вентильно-электромеханических систем. - Пенза: ПТИ, 2003. - 350с.

4. Математическое моделирование и обработка информации в исследованиях на ЭВМ./И.А. Прошин, Усманов В.В.; Под ред. И.А. Прошина. - Пенза: ПТИ, 2000. - 422с.

5. Теория систем автоматического управления/В.А. Бесекерский, Е.П. Попов. - Изд. 4-е, перераб. и доп. - СПб, Изд-во «Профессия», 2003. - 752 с.

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.