на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Теория искусственного интеллекта
p align="left">В программе К. Грина и др., реализующей вопросно-ответную систему, знания записываются на языке логики предикатов в виде набора аксиом, а вопросы, задаваемые машине, формулируются как подлежащие доказательству теоремы. Большой интерес представляет "интеллектуальная" программа американского математика Хао Ванга. Эта программа за 3 минуты работы IBM-704 вывела 220 относительно простых лемм и теорем из фундаментальной математической монографии, а затем за 8.5 мин выдала доказательства еще 130 более сложных теорем, часть их которых еще не была выведена математиками. Правда, до сих пор ни одна программа не вывела и не доказала ни одной теоремы, которая бы, что называется "позарез" была бы нужна математикам и была бы принципиально новой.

Очень большим направлением систем ИИ является робототехника. В чем основное отличие интеллекта робота от интеллекта универсальных вычислительных машин? /К пониманию МЕХАТРОНИКИ/:

Для ответа на этот вопрос уместно вспомнить принадлежащее великому русскому физиологу И. М. Сеченову высказывание: "… все бесконечное разнообразие внешних проявлений мозговой деятельности сводится окончательно лишь к одному явлению -- мышечному движению". Другими словами, вся интеллектуальная деятельность человека направлена в конечном счете на активное взаимодействие с внешним миром посредством движений. Точно так же элементы интеллекта робота служат прежде всего для организации его целенаправленных движений. В то же время основное назначение чисто компьютерных систем ИИ состоит в решении интеллектуальных задач, носящих абстрактный или вспомогательный характер, которые обычно не связаны ни с восприятием окружающей среды с помощью искусственных органов чувств, ни с организацией движений исполнительных механизмов.

Первых роботов трудно назвать интеллектуальными. Только в 60-х годах появились очуствленные роботы, которые управлялись универсальными компьютерами. К примеру в 1969 г. в Электротехнической лаборатории (Япония) началась разработка проекта "промышленный интеллектуальный робот". Цель этой разработки -- создание очуствленного манипуляционного робота с элементами искусственного интеллекта для выполнения сборочно-монтажных работ с визуальным контролем.

Манипулятор робота имеет шесть степеней свободы и управляется мини-ЭВМ NEAC-3100 (объем оперативной памяти 32000 слов, объем внешней памяти на магнитных дисках 273000 слов), формирующей требуемое программное движение, которое отрабатывается следящей электрогидравлической системой. Схват манипулятора оснащен тактильными датчиками.

В качестве системы зрительного восприятия используются две телевизионные камеры, снабженные красно-зелено-синими фильтрами для распознавания цвета предметов. Поле зрения телевизионной камеры разбито на 64*64 ячеек. В результате обработки полученной информации грубо определяется область, занимаемая интересующим робота предметом. Далее, с целью детального изучения этого предмета выявленная область вновь делится на 4096 ячеек. В том случае, когда предмет не помещается в выбранное "окошко", оно автоматически перемещается, подобно тому, как человек скользит взглядом по предмету. Робот Электротехнической лаборатории был способен распознавать простые предметы, ограниченные плоскостями и цилиндрическими поверхностями при специальном освещении. Стоимость данного экспериментального образца составляла примерно 400000 долларов.

Постепенно характеристики роботов улучшались, Но до сих пор они еще далеки по понятливости от человека, хотя некоторые операции уже выполняют на уровне лучших жонглеров. К примеру удерживают на лезвии ножа шарик от настольного тенниса.

Есть еще одна проблема -- проблема безопасности применения систем ИИ.

Данная проблема будоражит умы человечества еще со времен Карела Чапека, впервые употребившего термин "робот". Большую лепту в обсуждение данной проблемы внесли и другие писатели-фантасты. Как самые известные мы можем упомянуть серии рассказов писателя-фантаста и ученого Айзека Азимова, а так же довольно свежее произведение -- "Терминатор". Кстати именно у Айзека Азимова мы можем найти самое проработанное, и принятое большинством людей решение проблемы безопасности. Речь идет о так называемых трех законах роботехники.

1. Робот не может причинить вред человеку или своим бездействием допустить, чтобы человеку был причинен вред.

2. Робот должен повиноваться командам, которые ему дает человек, кроме тех случаев, когда эти команды противоречат первому закону.

3. Робот должен заботиться о своей безопасности, насколько это не противоречит первому и второму закону.

На первый взгляд подобные законы, при их полном соблюдении, должны обеспечить безопасность человечества. Однако при внимательном рассмотрении возникают некоторые вопросы. Во-первых, законы сформулированы на человеческом языке, который не допускает простого их перевода в алгоритмическую форму. Попробуйте, к примеру перевести на любой из известных Вам языков программирования, такой термин, как "причинить вред". Или "допустить". Попробуйте определить, что происходит в любом случае, а что он "допустил"?

Далее предположим, что мы сумели переформулировать, данные законы на язык, который понимает автоматизированная система. Теперь интересно, что будет подразумевать система ИИ под термином "вред" после долгих логических размышлений? Не решит ли она, что все существования человека это сплошной вред? Ведь он курит, пьет, с годами стареет и теряет здоровье, страдает. Не будет ли меньшим злом быстро прекратить эту цепь страданий? Конечно можно ввести некоторые дополнения, связанные с ценностью жизни, свободой волеизъявления. Но это уже будут не те простые три закона, которые были в исходнике.

Следующим вопросом будет такой. Что решит система ИИ в ситуации, когда спасение одной жизни возможно только за счет другой? Особенно интересны те случаи, когда система не имеет полной информации о том, кто есть кто.

Однако, несмотря на перечисленные проблемы, данные законы являются довольно неплохим неформальным базисом проверки надежности системы безопасности для систем ИИ.

Знания. База знаний

Интеллектуальная деятельность человека связана с поиском решений (действий, закономерностей), в новых, нестандартных ситуациях. Любая интеллектуальная деятельность опирается на знания о предметной области, в которой ставятся и решаются задачи.

Данные - это факты, сведения и идеи, представленные в формализованном виде, позволяющем передавать или обрабатывать их Ред.:Под термином "знания" подразумевается не только та информация, которая поступает в мозг через органы чувств. Такого типа знания чрезвычайно важны, но недостаточны для интеллектуальной деятельности. Дело в том, что объекты окружающей нас среды обладают свойством не только воздействовать на органы чувств, но и находиться друг с другом в определенных отношениях. Ясно, что для того, чтобы осуществлять в окружающей среде интеллектуальную деятельность (или хотя бы просто существовать), необходимо иметь в системе знаний модель этого мира. В этой информационной модели окружающей среды реальные объекты, их свойства и отношения между ними не только отображаются и запоминаются, но и могут мысленно "целенаправленно преобразовываться". При этом существенно то, что формирование модели внешней среды происходит "в процессе обучения на опыте и адаптации к разнообразным обстоятельствам".

Японский словарь - "знания" - результат, полученный познанием; система суждений, основанная на объективной закономерности.

Русский словарь - "знания"- проверенный практикой результат познания действительности, верное её отражение в мышлении человека.

Другие определения:

Знания - это совокупность сведений, образующих целостное представление, соответствующее определенному уровню осведомленности о некотором вопросе, предмете, проблеме, явлении. Знания описывают основные закономерности предметной области, позволяющие человеку решать конкретные производственные, научные и другие задачи. Знания являются основным понятием в ИС. Можно выделить еще ряд определений:

1. Знания - это результат, полученный познанием окружающего мира и его объектов.

2. Знания - это система суждений с принципиальной и единой организацией, основанная на объективной закономерности.

3. Знания - это формализованная информация, на которую ссылаются или которую используют в процессе логического вывода.

4. Под знанием понимается совокупность фактов и правил манипулирования фактами.

Проблема выделения знаний, прежде всего, относится к областям преобладания эмпирического знания, где накопление фактов опережает развитие теории. Знания важны там, где определения размыты, понятия меняются, ситуация зависит от множества контекстов, где велика неопределенность и нечеткость информации (контекст - относительно законченная в смысловом отношении часть текста высказывания). Таким образом, знания - это специальная форма представления смысловой информации, позволяющая хранить, воспроизводить и понимать эту информацию.

Знания обычно представляют в форме фактов, характерных для окружающего мира, и правил манипулирования фактами. Причем под фактом понимают элементарное высказывание с некоторой оценкой. Любую осмысленную часть факта считают данными, т.е. факты - это совокупности данных.

Данные сами по себе не несут смысловой нагрузки. Например, число 16.40 не имеет в себе смысла до тех пор, пока мы не узнаем, что это время отправления поезда или цена товара, т.е. данные нуждаются в интерпретации. В отличие от данных знания несут в себе определенную смысловую нагрузку, представляя собой нечто большее, чем просто последовательность символов. Этот смысл позволяет путем символьной обработки получать новую информацию.

Отличия знаний от данных:

1. Интерпретируемость. Данные в ЭВМ могут интерпретироваться только соответствующей программой. Знания отличаются тем, что в них присутствует возможность содержательной интерпретации.

2. Наличие классификационных отношений. Разнообразные формы хранения данных не обеспечивают возможности компактного описания всех связей между различными типами данных. При переходе к знаниям между отдельными единицами знаний можно установить такие отношения как «элемент-множество», «тип-подтип», «ситуация-подситуация», отражающие характер их взаимосвязей.

3. Наличие ситуативных связей, которые определяют ситуативную совместимость отдельных событий или фактов, хранимых или вводимых в память.

Четыре важнейших свойства, которые отличают знания от данных:

1 - высокая структурированность;

2 - внутренняя интерпретируемость (истолкование, объяснение) знаний и их связей;

3 - семантическая (смысловая) компактность - кластеризованность;

4 - взаимозависимость и взаимоактивность.

Для того чтобы данные превратились в знания, они должны быть определенным образом структурированы. Знание с этих позиций - некоторая организационная форма мышления, отражающая существенные свойства, связи и отношения предметов и явлений. Полезные знания - это данные, организованные в понятия.

Знания представляют собой иерархические структуры. Общие знания, касающиеся целых подобластей данной предметной области, включают в себя более узкие, касающиеся каких-то отдельных признаков или специальных вопросов из предметной области.

Между элементами и объектами знаний существуют функциональные и каузальные (причинностные) отношения. Функциональные отношения несут процедурную информацию, позволяющую определять или вычислять одни объекты через другие. Каузальные отношения задают причинно-следственные связи.

Семантика (смысловое значение, содержание) отношений между объектами может носить декларативный (данные) или процедурный (программы) характер

Классификация знаний

Знания делятся на формализованные и неформализованные. Формализованные знания выражаются в виде законов, формул, алгоритмов, моделей и т.п. Такие знания описываются в книгах и руководствах и отражают точные и универсальные знания в виде строгих суждений.

Неформализованные знания (вербальные - словесные) субъективны и приблизительны. Они являются результатом обобщения многолетнего опыта работы и интуиции специалиста и представляют собой некоторое множество эмпирических приемов и правил логического вывода. Это - ключевые понятия для ИИ.

Типы знаний

Поверхностные знания - это в основном приблизительные знания, эвристики и некоторые закономерности, устанавливаемые опытным путем. Такие знания в силу их приблизительности называют также экспертными.

Глубинные - отражают наиболее общие принципы, в соответствии с которыми развиваются все процессы в предметной области и свойства этих процессов. К глубинным относятся знания, основанные на теориях, абстракциях и аналогиях, в которых отражается понимание структуры предметной области. Для получения глубинных знаний необходимо понять внутренние механизмы, действующие в предметной области, и, прежде всего, основные закономерности, которые обуславливают принятие правильных решений. Глубинные знания используются прежде всего при решении неординарных ситуаций.

Процедурные знания - это знания, которые могут быть представлены процедурой или процессом. В компьютерной программе эти знания хранятся как код, а не как данные. Программные алгоритмы являются формой процедурных знаний, т.к. они содержат информацию о том, как решить конкретную задачу.

Декларативные - это знания, которые хранятся как данные. В декларативном представлении легко добавлять или изменять знания, т.к. они независимы от программы.

Статистические - тип знаний, которые не изменяются в процессе решения задачи.

Динамические - могут приобретаться с течением времени.

Жесткие знания позволяют получать однозначные четкие рекомендации при заданных начальных условиях.

Мягкие знания допускают множественные, расплывчатые решения и различные варианты рекомендаций.

Кроме указанных понятий используется понятие метазнания (знания о знаниях). Оно используется для обозначения знаний о способах использования знаний и свойств знаний.

В общем виде знания в ЭВМ представляются некоторой знаковой (семиотической) системой. С понятием «знак» непосредственно связаны понятия денотат и концент. Денотат - это объект, обозначаемый данным знаком. Концент - свойства денотата.

Экстенсионал знака определяет класс всех его допустимых денотатов. Интенсионал знака определяет содержание связанных с ним понятий.

Интенсиональные знания описывают абстрактные объекты, события, отношения. Например, поставщик, потребитель, транспорт. Экстенсиональные знания представляют собой данные, характеризующие конкретные объекты, их состояние, значения параметров в определенные отрезки времени. Экстенсионалом поставщика может быть завод, потребителя - предприятие, транспорта - автомобиль.

В семиотической (знаковой) системе выделяют три аспекта: синтаксический, семантический и прагматический.

Синтаксис описывает внутреннее устройство знаковой системы, т.е. правила построения и преобразования сложных знаковых выражений. Семантика определяет отношения между знаками и их концентами, т.е. задает смысл или обозначения конкретных знаков. Прагматика определяет знак с точки зрения конкретной сферы применения, либо субъекта, использующего данную знаковую систему.

Для хранения данных и знаний используются базы данных и базы знаний. База данных - это совокупность связанных данных, хранящихся с минимальной избыточностью и используемых различными приложениями посредством системы управления базами данных. База знаний - это совокупность описывающих предметную область правил и фактов, позволяющих с помощью механизма вывода решать вопросы, ответ на которые в явном виде в базе отсутствует. БЗ как программное средство обеспечивает поиск, хранение, преобразование и запись в память ПК сложно структурированных информационных единиц - знаний.

Совокупность модели представления знаний и связанных с ней процедур образуют систему представления знаний. База знаний и база данных рассматриваются как разные уровни информации, хранящейся в интеллектуальном банке информации. Системы управления базами знаний являются развитием систем управления базами данных..

Знания в ИС можно представить следующей схемой преобразования.

СХЕМА ПРЕОБРАЗОВАНИЯ ЗНАНИЙ

Блок представления знаний БПЗ связан с внешним миром (окружающей средой) двумя блоками преобразователей БП1 и БП2, которые преобразуют знания о предметной области из внешнего представления ВшП во внутреннее ВтП и наоборот.

БП3 имеет информационную модель следующего вида.

МОДЕЛЬ БЛОКА ПРЕДСТАВЛЕНИЯ ЗНАНИЙ

БПЗ

ИБД

Где БИ - блок интерпретаций, ИБД - интелл. банк данных,

БО - блок обучения, БЗ, БД - база знаний, база данных.

БВР - блок вывода решений,

Инженерия знаний

Проблемами проектирования баз знаний занимается инженерия знаний. В задачи инженерии знаний входит получение и структурирование знаний о некоторой предметной области, формирование для нее поля знаний и разработка баз знаний.

Поле знаний - это условное неформальное описание основных понятий и взаимосвязей между понятиями предметной области, выявленных из различных источников, в том числе, полученных от экспертов, в виде графов, диаграмм, таблиц, текстов и т.п.

Если для естественных наук достаточно аппарата классической математики, то в инженерии знаний разработчики имеют дело с «мягкими» предметными областями. Здесь классический математический аппарат не обеспечивает выразительной адекватности, здесь важна эффективность представления, его компактность, ясность интерпретации, наглядность и т.п.

Специалист, способный делать заключения по проблемам определенной области называется экспертом. Он накапливает знания в этой предметной области в результате многолетней практики, что позволяет распознавать и оценивать ситуации.

Средний специалист в конкретной предметной области помнит от 50 до 100 тыс. чанков и использует их для решения задач и проблем. Здесь чанк - (англ. chank - большой кусок) символьные образы, объединенные в человеческом мозге в блоки, запоминаемые и извлекаемые как единое целое.

Всем этим объясняется представление знаний в ИС в виде БЗ как сложных иерархических структур с соответствующими связями между этими структурами.

Требования к специалисту-эксперту:

1. Применять знания и опыт для «оптимального» решения задач, делать достоверные выводы, исходя из неполных и ненадежных данных.

2. Уметь обосновать сделанные выводы.

3. Приобретать новые знания, в т.ч. путем общения с другими экспертами.

4. Периодически систематизировать свои знания.

5. Находить новые правила принятия решений, в т.ч. эвристики (эмпирические правила вплоть до угадывания).

6. Оценивать степень своей компетентности и обращаться за консультацией к другим источникам.

Представление знаний в ИС -это проблема науки «инженерии знаний».

Инженер по знаниям - специалист, проектирующий БЗ на основе модели представления знаний и наполнения их знаниями из предметной области.

Представление знаний - процесс формализованного описания для ввода знаний в БЗ, структуризация знаний для облегчения поиска решений.

Описание проводится с помощью языка представления знаний (ЯПЗ). ЯПЗ - знаковая система, в которой описываются объекты и явления (или обобщения) согласно принятому множеству соглашений по знакам, синтаксису (построение, порядок, способ соединения слов и предложений) и семантике (смысловое значение). ЯПЗ обеспечивает возможность формальной записи знаний + оперирование знаниями.

Программист - специалист, призванный воплотить разрабатываемую ИС в виде программного средства.

Требуемые личные качества:

· Общительность,

· Способность отказаться от традиционных навыков и осваивать новые методы,

· Интерес к разработке.

Профессиональные качества:

· Иметь опыт и навыки самостоятельной разработки программ,

· Знакомство с основными структурами представления знаний и механизмами выводов,

· Знакомство с состоянием рынка программных продуктов для разработки ИС и диалоговых интерфейсов.

Процесс формирования поля знаний экспертом и инженером по знаниям может быть представлен следующим алгоритмом:

1. Восприятие и интерпретация действительности предметной области некоторым экспертом, в результате образуется некоторая модель как семантическое представление действительности и его личного опыта.

2. вербализация опыта некоторого эксперта, когда он объясняет свои рассуждения и передает свои знания инженеру по знаниям. В результате образуется некоторое текстовое или речевое сообщение. Именно в процессе объяснения эксперт на размытые ассоциативные образы в лабиринтах своей памяти «надевает» четкие словесные ярлыки, т.е. вербализирует знания.

3. Восприятие и интерпретация некоторого сообщения инженером по знаниям. В результате в памяти инженера образуется некоторая модель предметной области.

4. Кодирование и вербализация модели в форме некоторого поля знаний, спроектированного инженером по знаниям для реализации в базе знаний.

Это трудная задача - добиться максимального соответствия между действительным состоянием предметной области и некоторым полем знаний. Поле знаний может быть представлено как пирамида, где следующий уровень служит для восхождения на новую ступень обобщения и углубления знаний.

В искусственном интеллекте используется термин - формирование знаний, который обозначает процесс анализа данных и выявления скрытых закономерностей с использованием специального математического аппарата и программных средств ЭВМ. Основные методы извлечения знаний представлены на рис.

Все эти методы позволяют сформировать поле знаний на основании следующего алгоритма:

1.Определение входных и выходных данных, структура которых существенно влияет на форму и содержание поля знаний.

2.Составление словаря терминов и наборов ключевых фраз, при этом особенно важен словарь терминов.

3.Выявление объектов и понятий, выбор значимых понятий и их признаков.

4.Выявление связей между понятиями, построение сети ситуаций, где связи только намечены, но пока не поименованы.

5.Структуризация понятий с выявлением понятий более высокого уровня обобщенгия и детализацией на более низком уровне.

6.Построение пирамиды знаний с иерархической лестницей понятий по уровню общности.

7.Определение временных, причинно-следственных и других отношений с их обозначением путем присвоения имен свеем связям.

8.Определение стратегий принятия решений. Выявление цепочек рассуждений связывает все сформированные ранее понятия и отношения в динамическую систему поля знаний.

Модели представления знаний

От формы представления знаний зависит характеристика и свойства систем искусственного интеллекта. В отличие от знаний, используемых человеком, в компьютере используется моделирование знаний. Под моделью знаний понимается способ описания знаний в базе знаний.

В общем случае модели представления знаний могут быть условно разделены на декларативные и процедурные. Декларативная модель основывается на предположении, что проблема представления некоторой предметной области решается независимо от того, как эти знания будут использоваться. Поэтому модель состоит как бы из двух частей: структур, описывающих знания и механизма вывода, оперирующего этими структурами, независимо от содержательного наполнения структур. При этом синтаксические и семантические аспекты разделены. Описания выполняемых процедур не содержатся в явном виде. Предметная область представляется в виде описания ее состояния, а вывод решения основывается в основном на процедурах поиска в пространстве состояний.

Процедурная модель основывается не небольших программах (процедурах), которые определяют, как поступать в конкретных ситуациях. В этой модели семантика заложена непосредственно в описании элементов базы знаний. Общие правила представлены в виде специальных целенаправленных процедур.

Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.