на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Технология извлечения знаний из нейронных сетей: апробация, проектирование ПО, использование в психолингвистике
p align="left">Если же сеть с самого начала не может обучиться правильно решать задачу, то будем исключать из таблицы данных наиболее трудные примеры до тех пор, пока сеть не сможет обучиться. Далее надо исследовать статистические различия между набором оставшихся и исключенных данных - может обнаружиться, что отброшенные примеры образуют отдельный кластер. Так было при решении задачи нейросетевой постановки диагноза вторичного иммунодефицита по иммунологическим и метаболическим параметрам лимфоцитов. Только коррекция классификационной модели (из отброшенных данных сформировали третий класс в дополнение к двум изначально имевшимся) позволила обучить сеть правильно решать теперь уже измененную задачу ([17], стр. 15-16). Далее это даст более простой набор решающих правил, т.к. ранее сеть была вынуждена фактически запоминать обучающую выборку, а теперь классификационная модель соответствует естественной внутренней кластерной структуре объектов проблемной области.

Еще одна трудность может существовать при попытке решения задачи, для которой обратная задача некорректно поставлена в некоторых точках области определения - например, из-за того, что в этих точках происходит смена описывающей данные зависимости. В зависимости от уровня некорректности, на некотором наборе обучающих точек сеть будет давать большую ошибку обучения по сравнению с ошибкой на других точках. Исследование поведения частной производной выходного сигнала сети по входному сигналу помогает определять области некорректности как границы смены вида решения. Если границы решения совпадают с примерами выборки с большой ошибкой обучения, то это говорит о том, что некорректность действительно существует и исходная нейросеть не может аппроксимировать поведение фукнции в области некорректности с требуемой точностью. Требуемую точность можно достичь увеличением размера сети (с соответствующим усложнением процесса ее интерпретации), но это нежелательно. Поэтому предпочтительнее подход [53], связанный с переходом от единственной сети к набору малых сетей, каждая из которых работает внутри своей области определения, а выбор той или иной сети осуществляется с помощью набора условных правил, сравнивающих значения признаков примера выборки с границами решения.

Гибкое управление требуемой точностью решения примеров обучающей выборки или требуемым числом правильно решенных примеров позволяет предложить следующий механизм построения иерархической структуры правил вывода, от наиболее важных правил до уточняющих и корректирующих, как циклическое выполнение следующих этапов:

обучение сети до распознавания заданного числа примеров обучающей выборки (или до решения всех примеров выборки с заданной точностью),

упрощение сети,

извлечение правил,

фиксирование полученной минимальной структуры сети,

возвращение в сеть удаленных на этапе упрощения элементов,

увеличение требуемого числа правильно распознанных примеров (или усиление требований к точности) - на следующей итерации цикла это добавит к полученной минимальной структуре некоторое число элементов, которые и сформируют правила следующего уровня детализации.

4.4.3. Ручное конструирование сети из фрагментов нескольких логически прозрачных сетей

Принципиально, что для одной и той же таблицы данных и различных сетей (либо одной сети, но с разной начальной случайной генерацией исходных значений набора настраиваемых параметров) после обучения, упрощения по единой схеме и вербализации может получиться несколько различных логически прозрачных сетей и, соответственно, несколько алгоритмов решения задачи. По конечной таблице данных всегда строится несколько полуэмпирических теорий или алгоритмов решения. Далее теории начинают проверяться и конкурировать между собой. Комбинируя фрагменты нескольких теорий, можно сконструировать новую теорию. В силу этого неединственность получаемого знания не представляется недостатком.

При вербализации некоторые синдромы достаточно осмысленны и естественны, другие, напротив, непонятны. Из набора логически прозрачных нейросетей можно отсеять несколько наиболее осмысленных синдромов, объединить их в новую нейронную сеть, при этом введя, если необходимо, некоторые дополнительные нейроны или синапсы для связывания этих фрагментов между собой. Полученная нейросеть после адаптации и упрощения может быть более понятна, чем любой из ее предков. Таким образом, неединственность полуэмпирических теорий может стать ценным инструментом в руках исследователей-когнитологов.

В отдельные программы-нейроимитаторы встроены специальные средства визуального конструирования нейросетей. Однако ручное конструирование сети с целью заложения в нее эмпирических экспертных знаний достаточно сложно и часто практически неприменимо.

Вместо конструирования нейросети "с нуля" будем конструировать ее из фрагментов других сетей. Для реализации такой возможности программа-нейроимитатор должна включать в себя достаточно развитый визуальный редактор нейронных сетей, позволяющий вырезать из сетей отдельные блоки, объединять их в новую сеть и дополнять сеть новыми элементами. Это одна из возможностей нейроимитатора NeuroPro (идея предложена лично автором работы).

Если в результате дообучения и упрощения новой сети понимаемость использованных при конструировании фрагментов не потеряна, то новый набор правил потенциально более понятен пользователю, чем каждый из начальных.

Естественно, что возможны различные стратегии обучения и контрастирования сконструированной сети: можно запрещать обучение (изменение параметров) и контрастирование фрагментов, из которых составлена сеть, и разрешать обучение и контрастирование только добавленных элементов. Можно разрешать только дообучать фрагменты, можно разрешать и их контрастирование. Все зависит от предпочтений пользователя программы-нейроимитатора.

Глава 5. Нейросетевой анализ структуры индивидуального пространства смыслов

5.1. Семантический дифференциал

Слова осмысляются человеком не через "толковый словарь", а через ощущения, переживания. За каждым словом у человека стоит несколько этих базовых переживаний: собака - это что-то маленькое, добродушненькое, пушистое, с мокрым язычком, …, но это и здоровенный, грозно рычащий зверь со злобными глазами, огромными клыками, … . Большинство слов кодирует некоторые группы переживаний, ощущений, и определить смысл слова, то есть эти самые переживания - довольно сложная задача.

Дж. Осгуд с соавторами в работе под названием “Измерение значений” ввели для решения этой задачи метод “семантического дифференциала” (обзор литературы дан в работе [86]). Они предложили искать координаты слова в пространстве свойств следующим образом. Был собран некоторый набор слов (например, "мама", "папа" и т.д.) и набор признаков к этим словам (таких, как близкий - далекий, хороший - плохой, и т.д.), и опрашиваемые люди оценивали слова по этим шкалам. Затем отыскивался минимальный набор координат смысла, по которому можно восстановить все остальные. Было выделено 3 базовых координаты смысла, по которым все остальные можно предсказать достаточно точно: сильный - слабый, активный - пассивный и хороший - плохой. С другой стороны, выявились огромные различия между культурами, например, у японцев и американцев очень многие вещи имеют существенно разные смысловые характеристики.

Существуют различные способы выделения основных признаков (базовых координат), например, метод главных компонент, факторный анализ и др. В данной работе используются нейросетевые методы. Разработка технологии сокращения описания и извлечения знаний из данных с помощью обучаемых и разреживаемых нейронных сетей началась в 90-е годы XX века и к настоящему времени созданы библиотеки нейросетевых программ даже для PC, позволяющие строить полуэмпирические теории в различных областях.

В данной работе с помощью нейроимитатора исследовались индивидуальные смысловые пространства. Был создан вопросник, в котором определяются координаты (от -10 до 10) 40 слов по 27 параметрам и были проведены эксперименты на нескольких людях.

Слова:

Папа

Мама

Болезнь

Детский сад

Школа

Собака

Кот

Воробей

Ворона

Апельсин

Яблоко

Дед Мороз

Дерево

Змея

Еда

Тортик

Горшок

Брат

Сестра

Работа

Деньги

Квартира

Муж (жена)

Дедушка

Бабушка

Музыка

Президент

Парламент

Политика

Наука

Политик

Ученый

Теорема

Выборы

Коммунизм

Доказательство

Россия

Америка

Китай

Израиль

Религия

Бог

Плотный - рыхлый

Молодой - старый

Светлый - темный

Разумный - неразумный

Холодный - горячий

Быстрый - медленный

Близкий - далекий

Пугливый - бесстрашный

Страшный - не страшный

Спокойный - беспокойный

Веселый - грустный

Удобный - неудобный

Красивый - некрасивый

Опасный - безопасный

Приятный - неприятный

Ручной - дикий

Утонченный - грубый

Умный - глупый

Шумный - тихий

Ласковый - грубый

Большой - маленький

Дружественный - враждебный

Мягкий - твердый

Добрый - злой

Активный - пассивный

Хороший - плохой

Сильный - слабый

1

125

В экспериментах отыскивался минимальный набор координат смысла, по которому можно восстановить все остальные с точностью до тенденции (т.е. с точностью до 3 баллов). Это делалось при помощи нейросетевого имитатора NeuroPro. Следует отметить, что предсказание с точностью до 3 баллов фактически соответствует переходу от 21-балльных шкал (от -10 до 10) к традиционным 7-балльным (от -3 до 3).

С помощью NeuroPro возможно получение показателей значимости входных сигналов для принятия нейросетью решения, показателей чувствительности выходного сигнала сети к изменению входных сигналов, показателей значимости и чувствительности по отдельным примерам выборки.

За начальную архитектуру была взята слоистая нейронная сеть, состоящая из трех слоев по 10 нейронов в каждом. Далее проводились последовательно следующие операции.

1) Обучение нейронной сети с максимальной допустимой ошибкой обучения 0.49 балла (такая ошибка приводит к тому, что после округления ошибка обучения фактически равна 0). Как показал опыт, такой ошибки обучения чаще всего достаточно для предсказаний с требуемой точностью, то есть для ошибки обобщения, меньшей 3 баллов.

2) Из входных сигналов выбирался наименее значимый и исключался, после чего проводилось повторное обучение нейросети с новыми входными сигналами и прежней ошибкой обучения.

Эта процедура проводилась до тех пор, пока нейросеть могла обучиться. В результате этих операций были получены минимальные определяющие наборы признаков (т.е. наборы входных сигналов, оставшиеся после сокращения их числа).

Для разных людей получены очень разные результаты (первые результаты представлены в [87]), совсем непохожие на результаты Осгуда. Вот типичные примеры:

Определяющий набор признаков 1-го человека (размерность 7):

Умный - глупый, шумный - тихий, разумный - неразумный, плотный - рыхлый, дружественный - враждебный, страшный - не страшный, опасный - безопасный.

2-го человека: сильный - слабый, приятный - неприятный, опасный - безопасный, страшный - не страшный, дружественный - враждебный, удобный - неудобный (размерность 6).

3-го человека: приятный - неприятный, опасный - безопасный (размерность 2). Представляет интерес, что Осгудовские признаки почти не представлены в большинстве наборов. В связи с этим было решено проверить, можно ли предсказать значения произвольно выбранных признаков при помощи набора Осгуда (ошибка обучения в экспериментах допускалась 0.49 балла). Практически во всех случаях нейронные сети обучались с приемлемой ошибкой обучения, но ошибка обобщения в экспериментах со скользящим контролем (нейронные сети обучались по всем словам, кроме 2-х - 3-х, а потом тестировались на этих словах) часто была недопустимо велика (5-9 баллов). После этого проводились следующие эксперименты: нейронная сеть обучалась предсказывать значения параметров по уже определенному минимальному набору признаков на одной половине слов, далее она тестировалась на словах из другой половины.

При этом для большинства слов нейронные сети давали удовлетворительные прогнозы по всем параметрам (с точностью до 3 баллов), но почти во всех случаях обнаруживались одно - два слова, для которых сразу по нескольким признакам ошибка нейронных сетей была очень велика.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.