на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Защита информации
p align="left">Код Энигма в своем первоначальном виде потерял свою привлекательность при появлении ЭВМ, т.к. пять барабанов могли обеспечить лишь около ста миллионов ключей, что возможно перебрать за один день.

5. Второй этап развития криптографии

5.1 Шенноновское понятие секретных систем

По Шеннону существует три общих типа секретных систем:

1. Системы маскировки, которые включают в себя применение таких методов, как невидимые чернила, представление сообщения в форме безобидного текста или маскировки криптограммы, и другие методы, с помощью которых факт наличия сообщения скрывается от противника;

2. Тайные системы (например, инвертирование речи), в которых для раскрытия сообщения требуется специальное оборудование;

3. «Собственно» секретные системы, где смысл сообщения скрывается при помощи шифра, кода и т.д., но само существование сообщения не скрывается и предполагается. Что противник обладает любым специальным оборудованием, необходимым для перехвата и записи переданных сигналов.

Математически криптограмма выглядит следующим образом: , где - сообщение, - ключ, т.е. является функцией от и .

Оценка секретных систем.

Имеется несколько различных критериев, которые можно использовать для оценки качества секретной системы. Рассмотрим их подробнее.

1) Количество секретности.

Некоторые секретные системы являются совершенными в том смысле, что положение противника не облегчается в результате перехвата любого количества сообщений. Другие системы, хотя и дают противнику некоторую информацию при перехвате очередной криптограммы, но не допускают единственного «решения». Системы, допускающие единственное решение, очень разнообразны как по затрате сил и времени, необходимых для получения этого решения, так и по количеству материала, который необходимо перехватить для получения единственного решения.

2) Объем ключа.

Ключ должен быть передан из передающего пункта в приемный пункт таким способом, чтобы его нельзя было перехватить. Иногда его нужно запомнить. Поэтому желательно иметь ключ настолько малый, насколько это возможно.

3) Сложность операции шифрования и дешифрования.

Операции шифрования и дешифрования должны быть, конечно по возможности, простыми. Если эти операции производятся вручную, то их сложность приводит к потере времени, появлению ошибок и т.д. Если они производятся механически, то сложность приводит к использованию больших и дорогих устройств.

4) Разрастание числа ошибок.

В некоторых типах шифров ошибка в одной букве, допущенная при шифровании или передаче, приводит к большому числу ошибок в расшифрованном тексте. Такие ошибки разрастаются в результате операции дешифрования, вызывая значительную потерю информации и часто требуя повторной передачи криптограммы.

5) Увеличение объема сообщения.

В некоторых типах секретных систем сообщения увеличиваются в результате операции шифрования. Этот нежелательный эффект можно наблюдать в системах, в которых делается попытка потопить статистику сообщения в массе добавляемых нулевых символов, или где используются многократные замены.

Совершенная секретность.

Предположим, что имеется конечное число возможных сообщений. с априорными вероятностями и что эти сообщения в возможные криптограммы , так что - отображение, которое приводит сообщение к криптограмме .

После того, как шифровальщик противника перехватил некоторую криптограмму , он может вычислить апосториорные вероятности различных сообщений .

Необходимое и достаточное условие для того, чтобы система была совершенно секретной, можно записать в следующем виде

где - априорная вероятность сообщения ;

- условная вероятность криптограммы при условии, что выбрано сообщение , т.е. сумма вероятностей всех тех ключей, которые переводят сообщение в криптограмму ;

- вероятность получения криптограммы ;

- апостериорная вероятность сообщения при условии, что перехвачена криптограмма .

Для совершенной секретности системы величины и должны быть равны для всех и . Следовательно, должно быть выполнено одно из равенств:

или же , для любых и .

Если , то , и система совершенно секретна.

Теорема.

Необходимое и достаточное условие для совершенной секретности состоит в том, что

для всех и , т.е. не должно зависеть от .

Ненадежность.

Имеется два основных типа ненадежности: ненадежность ключа и ненадежность сообщения.

- ненадежность ключа;

- ненадежность сообщения.

,

,

где , , - криптограмма, сообщение, ключ.

- вероятность ключа и криптограммы .

- апостериорная вероятность ключа , если перехвачена криптограмма .

- вероятность сообщения и криптограммы .

- апостериорная вероятность сообщения , если перехвачена криптограмма .

Для кода подстановки.

6. Третий этап развития криптографии

Идею, лежащую в основе криптосистем с открытым ключом, высказали в 1975 году Диффи и Хелмен. Они ввели понятие односторонней функции с секретом. Это дало принципиальную возможность разрабатывать криптосистемы с открытым ключом, в которых алгоритм шифрования является общедоступным, и поэтому нет необходимости в секретных каналах связи для предварительного обмена ключами.

При шифровании с открытым ключом для шифрования и расшифрования используются разные ключи, и знание одного их них не дает практической возможности определить второй.

6.1 Шифр Ривеста - Шамира - Алдемана

Первой и наиболее известной криптографической системой с открытым ключом была предложенная в 1978 году система RSA (Массачусетский технологический институт). Она основана на трудности разложения больших целых чисел на простые сомножители.

Исходный текст должен быть переведен в цифровую форму. В результате текст представляется в виде одного большого числа. Затем полученное число разбивается на части так, чтобы каждая из них была числом в промежутке от до . .

Пользователь , отправляющий сообщение , шифрует его следующим образом: . Этот текст получает только пользователь .

Чтобы восстановить исходный текст, поступает следующим образом:

1. Находит число , такое, что и .Это сравнение разрешимо единственным образом, поскольку .

Для решения сравнения пользователь должен вычислить .

Любой другой пользователь, который знает только , вынужден находить и , т.е. разлагать число на простые множители, а эта задача при больших и имеет большую вычислительную сложность. Далее пользователь вычисляет .

Алгоритм применения RSA.

1. Отправитель выбирает два больших простых числа и . Вычисляет два произведения и

2. Затем он выбирает случайное число (целое), взаимно простое с , и вычисляет , удовлетворяющее условию .

3. После этого он публикует и как свой открытый ключ шифрования, сохраняя как закрытый ключ.

4. Если - сообщение, длина которого, определяемая по значению выражаемого им целого числа, должна быть в интервале , то она превратится в криптограмму возведением в степень по модулю и отправляется получателю в следующем виде .

5. Получатель сообщения расшифровывает его. Возводя в степень по модулю , так как

Пояснение.

Таким образом, открытым ключом служит пара чисел и , а секретным ключом число . Крипкостойкость системы RSA основана на том, что не может быть просто вычислена без значения и , нахождение этих сомножителей из достаточно трудоемко.

Электронная подпись (цифровая подпись).

Если планирует подписывать документ Ц.П., то он должен выбрать параметры RSA. выбирает два простых числа и , вычисляет затем выбирает число ,взаимно простое с , и вычисляет , далее публикует числа и и хранит в секрете . Числа - более не понадобятся.

Пусть хочет подписать сообщение . Тогда вычисляет хеш-функцию , которая ставит в соответствие сообщению число .

Практически невозможно изменить основной текст , не изменив . Поэтому достаточно снабдить только число подписью, и эта подпись будет относиться ко всему сообщению .

Далее вычисляет число , т.е. она возводит число в свою секретную степень. Число - цифровая подпись.

- вид сообщения с подписью.

Теперь каждый, кто знает открытые параметры , т.е. и , может проверить подлинность его подписи.

Для этого необходимо вычислить значение хеш-функции , т.е. число , и проверить равенство .

/*Пример*/ Электронная подпись RSA.

Пусть

(алгоритм Евклида).

(допущение)

вычисляет

- сообщение с подписью

Вычисляем значение хеш-функции, получим

Подпись верна.

Определение Хеш-функции.

Хеш-функцией называется любая функция , которая строке сообщения произвольной длины ставит в соответствие целое число фиксированной длины.

9. Криптографические алгоритмы

9.1 Шифр Эль-Гамаля

Пусть имеются абоненты , которые хотят передавать друг другу зашифрованные сообщения, не имея никаких защищённых каналов связи.

Для всей группы абонентов выбирается некоторое большое простое число и число , такие, что различные степени - различные числа по модулю . Числа и передаются абонентам в открытом виде.

Затем каждый абонент выбирает своё секретное число , , и вычисляет соответствующе ему открытое число ,

()

В результате получаем следующую таблицу ().

Абонент

Открытый ключ

Секретный ключ

Табл(). Ключи пользователей в системе Эль=Гамаля.

Алгоритм передачи сообщения от к выглядит следующим образом: будем считать, что сообщение .

Шаг 1. Алиса формирует случайное число , , вычисляет числа:

(9.1.2)

(9.1.3)

и передаёт пару чисел абоненту Бобу.

Шаг 2. Боб, получив , вычисляет

(9.1.4)

/*Пример*/

Алиса хочет передать Бобу сообщение . Допустим Пусть Боб выбрал для себя секретное число и вычислил по формуле (9.1.1)

Алиса выбирает случайное число , например , и вычисляет по (9.1.2) и (9.1.3):

.

Теперь Алиса посылает Бобу шифрограмму (17,12). Боб вычисляет по формуле (9.1.4):

Боб расшифровал сообщение

Электронная подпись на базе Эль-Гамаля.

Алиса выбирает большое простое число и число , такие, что различные степени - это различные числа по модулю . Эти числа передаются или хранятся в открытом виде и могут быть общими для целой группы пользователей. Алиса выбирает случайное число , , которое она держит в секрете. Это её секретный ключ.

Затем она вычисляет число

(9.1.5)

Это число Алиса публикует в качестве открытого ключа. Заметим, что при больших , зная , невозможно найти (это задача дискретного логарифмирования).

Теперь Алиса может подписывать сообщения. Допустим, она хочет подписать сообщение . Опишем последовательность действий для построения подписи.

Вначале Алиса вычисляет значение хеш-функции для сообщения , которое должно удовлетворять неравенству . Затем Алиса случайным образом выбирает число , взаимно простое число с , и вычисляет число:

(9.1.6)

Далее Алиса вычисляет числа:

(9.1.7)

(9.1.8).

Под в (9.1.8) подразумевается число, удовлетворяющее уравнению

Страницы: 1, 2, 3, 4, 5



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.