на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Методы совмещения наполнителя со связующим
p align="left">Метод полимеризационного наполнения можно применять не только для получения готовых композитов с заданным содержанием наполнителя, но и для модифицирования поверхности наполнителя. Это достигается путём формирования в процессе полимеризации на частицах наполнителя тонких полимерных покрытий, что можно рассматривать как аппретирование поверхности с помощью макромолекул.

Такие полимеризационномодифицированные наполнители - «концентраты» норпластов - можно использовать как самостоятельные сверхвысоконаполненные композиционные материалы, содержащие до 80-85% минерального сырья, например, для изготовления теплоизоляции, электро-, теплопроводящих и других материалов. Использование концентратов норпластов является перспективным, так как позволяет получать материалы, обладающие более хорошими физико-механическими свойствами по сравнению с механическими смесями аналогичного состава. В случае полиэтиленовых композитов эти различия особенно сильно проявляются в значении ударной вязкости - для композитов на основе полимеризационномодифицированных наполнителей эта характеристика оказалась в 1,5-2 раза выше, чем для соответствующих механических смесей. Увеличение до определённого предела толщины, образующегося на частицах наполнителя полимерного покрытия, которое представляет собой слой сверхвысокомолекулярного полиэтилена, приводит к улучшению прочностных свойств и жёсткости материалов на основе концентратов норпластов при одном и том же содержании минерального наполнителя [8].

Применение метода полимеризационного наполнения для введения наполнителей в полипропилен (ПП) привело к созданию новых материалов, обладающих необычным комплексом физических и механических характеристик [8]. Структура ПП, образующегося на поверхности наполнителя, во многом определяется природой наполнителя, условиями приготовления катализатора и проведения процесса. Графит, используемый как наполнитель, позволяет получить ПП с наибольшей степенью изотактичности (до 94-96%).

Исследование электрической проводимости полипропиленграфитовых композиций показало, что полимеризационное наполнение - новый перспективный путь получения тепло- и электропроводящих композиций. Композиты, полученные методом полимеризационного наполнения имеют гораздо большую электрическую проводимость, чем механические смеси ПП и графита. Различия в проводимости особенно существенны (в 107 раз) при низких объёмных концентрациях наполнителя С ? 8%. Для получения путём механического смешения композиций с такой же проводимостью необходимо ввести 30% графита, что приводит к снижению прочности при растяжении и сжатии в 1,55 раза композиты на основе ПП и графита обладают высокой однородностью.

Композиты на основе ПП и графита обладают ещё одним замечательным свойством - сохраняют пластичность и механическую прочность после многократных циклов охлаждения и нагревания от 300 до 4,2 К. изучение поверхности прессованных образцов таких норпластов показало, что норпласт (при одинаковых размерах частиц исходного графита) содержит частицы графита меньших размеров, равномерно распределённые в полимерной матрице, чем механические смеси, и расстояние между частицами наполнителя в норпласте значительно меньше.

Композиты на основе ПП и графита перспективны для применения в элементах электронагревательных устройств, покрытиях для экранов радиоэлектронной аппаратуры, тензодатчиках, эксплуатируемых при низких температурах, высокостабильных резистора, антистических покрытиях, электрофильтрах.

По прочностным характеристикам норпласты на основе ПП при степени наполнения 30-40% близки к ненаполненному изотактическому ПП. Наличие атактической фракции ПП в композите (до 10-15%) оказывает пластифицирующее действие и улучшает его деформационные свойства.

Как известно, наилучшими магнитными характеристиками обладают анизотропные магниты, которые получают при переработке композита с максимальной ориентацией частиц наполнителя под действием внешнего магнитного поля. Магнитные свойства определяются степенью наполнения и степенью ориентации частиц в магнитном поле, поэтому для получения высоких параметров необходимо достичь максимальной степени ориентации при максимальном содержании наполнителя. При получении магнитопластов механическим смешением компонентов степень ориентации начинает падать уже при содержании наполнителя 70ч75% масс. Использование метода полимеризационного наполнения позволяет достигнуть равномерного распределения частиц наполнителя (96 масс. %) в полимере, облегчает их ориентацию в магнитном поле, благодаря наличию полимерной оболочки, (степень текстуры составляет более 90%) [35].

Таким образом, метод полимеризационного наполнения позволяет решить одну из важнейших проблем наполненных композиционных материалов - проблему совместимости неорганической и органической фаз. Условия полимеризации обеспечивают покрытие частиц мелкодисперсной или волокнистой природы сплошным полимерным слоем [35].

По технологии полимеризационного наполнения создан новый инженерный пластик - Компонор на основе СВМПЭ высокой плотности и минерального наполнителя каолина. Введение минерального наполнителя улучшает ряд характеристик СВМПЭ и позволяет получать материал с уникальным комплексом свойств (табл. 4, 5).

Таблица 5

Материал

Содержание каолина, масс. %

Предел текучести при растяжении, МПа

Разрушающее напряжение при растяжении, МПа

Относительное удлинение при разрыве, %

Модуль упругости при растяжении, МПа

Удельная ударная вязкость, кДж / м2

Коэффициент трения

Коэффициент изнашивания по стали * 10-6, мм3 / нм

Коэффициент термического расширения *10-4 град-1

Компонор

3-6-3

50

20

32

400

1900

Не разрушается

0,2-0,25

20

0,78

30

18

23

200

2700

Не разрушается

-

5

-

СВМПЭ

0

24

40

500

900

Не разрушается

0,23-0,24

60

2,0

F-4

0

10

20-30

350-400

450-600

-

0,05-0,1

260

0,8-2

Сравнительные характеристики материалов на основе СВМПЭ и каолина (компонор 3-6-3), полученных полимеризационным наполнением, ненаполненного СВМПЭ и фторопласта (F-4)

Композиции Компонора с содержанием каолина 30-50 масс. % обладают высокой износостойкостью ( в 2-10 раз выше по сравнению со СВМПЭ ), высокой ударной прочностью и жёсткостью ( в 2-3 раза выше по сравнению со СВМПЭ ); жёсткость Компонора приближается к жёсткости, характерной для полиамидов, ацетатных смол и других пластиков.

Компонор также обладает высокой радиационной и химической стойкостью по отношению к кислотам, щелочам и многим органическим растворителям. Повышенная влажность не влияет на его свойства. Компонор может использоваться в широком диапазоне температур - от очень низких до 100 0С, отличается повышенными антиадгезионными и антикоррозионными свойствами, пониженными хладотекучестью, ползучестью и коэффициентом трения.

Методом полимеризационного наполнения получены теплозащитные материалы при содержании вспученного перлита более 87 мас. % имеющие кислородный индекс 28%. В отличие от аналогичных материалов, использующих реактопласты, они нетоксичны. Материалы обладают также звукоизоляционными свойствами. Плотность материала на основе полимеризационно наполненного СВМПЭ и вспученного перлита можно регулировать в зависимости от плотности исходного перлита и давления при формовании (табл.6).

Таблица 6

Свойства теплоизоляционных материалов на основе СВМПЭ и вспученного перлита

Содержание перлита, мас. %

Плотность, кг/м3

Прочность при сжатии при10% деформации, МПа

Прочность при сжатии, МПа

Деформация, %

Модуль упругости, МПа

Теплопроводность, Вт/мК

87

180

0,57

1,07

48

35

-

86

160

0,32

0,40

28

28

0,05

85

140

0,30

0,40

21

24

0,06

Технология полимеризационного наполнения позволила создать композиционный материал, сочетающий теплопроводящие и диэлектрические свойства. Содержание дисперсного алюминия в композите составляет 27-53 об.% при равномерном распределении его в матрице. Разработанные полимеризационно наполненные композиционные материалы обладают значительно более высоким удельным электрическим сопротивлением по сравнению с механическими смесями при одинаковых составах. Теплопроводность увеличивается с повышением содержания алюминия в отличие от механических смесей.

В противоположность алюминию введение графита в полипропилен полимеризационным методом позволяет получать композиты с высокой электропроводимостью: удельное электрическое сопротивление 105 ч 10-2 Ом/см при содержании графита 10 ч 70 мас. %. Полученные материалы не разрушаются при повторном температурном изменении от 4 до 298 К и имеют положительный температурный коэффициент сопротивления. Он равен 10-4 град-1 в интервале 300 ч 400К.

Микрокапсулирование частиц магнитоактивных наполнителей изотактическим полипропиленом в условиях синтеза полипропилена приводит к образованию высоконаполненных композиционных материалов, имеющих высокие магнитные параметры.

Полимерное покрытие на поверхности частиц наполнителя даёт ещё один интересный эффект - оно облегчает ориентацию магнитных частиц в магнитном поле и обеспечивает возможность получать композиты с высокой степенью текстурирования (до 90%) при высоком содержании наполнителя (до 96%) и, как результат, улучшенными магнитными характеристиками.

Список использованной литературы

1. Липатов Ю.С., Сергеева Л.М. Адсорбция полимеров. - Киев: Наукова думка, 1972. - 196 с.

2. Дубкова В.И., Ермоленко И.Н., Люблинер И.П. Полимеризация эпоксидной смолы на поверхности модифицированного углеродного волокна/ /ВМС. - № 6, Т.26(А). - С.1139 - 1145.

3. Полимеризационно-поликонденсационный метод получения сетчатых полимеров и армированных пластиков/ /Пласт. массы. - 1983. - № 2. - С. 59.

4. А.с. 763379 СССР, МКИ, С 08 13/00. Способ получения композиционного материала/ Л.А. Костандов, Н.С. Ениколопов, Ф.С. Дьячковский (СССР). - 2377105/23-05; Заявл. 25. 06.76; Опубл. 15.09.80/ / Открытия. Изобретения. - 1980. - № 34. - С.129.

5. Дьячковский Ф.С., Новокшонова Л.А. Синтез и свойства полимеризационнонаполненных полиолефинов/ /Успехи химии. - 1984. - № 2. - С. 200 - 223.

6. Липатов Ю.С. Физическая химия наполненных полимеров. - М.: Химия, 1977. - 304 с.

7. Смирнов В.В., Ткаченко Л.А., Когарко Н.С. Исследование взаимодействия дисперсных частиц в процессе полимеризационного наполнения/ /Докл. АН СССР. - 1984 - № 4, Т.278. - С.927 - 930.

8. Галашина Н.М. Полимеризационное наполнение как метод получения новых композиционных материалов/ /ВМС. - 1994. - № 4, Т.36. - С.640 - 650.

9. Реакции в полимерных системах/Под ред. Иванчева А.С. - Л.: Химия, 1987. - 304 с.

10. Фролов В.Г., Куличихин С.Г., Гордеева Л.А. Полимеризационное наполнение полиамида 6/ /Пласт. массы. - 1985. - № 6. - С.8 - 10.

11. Артёменко С.Е. , Титова Т.П., Кардаш М.М. Поликонденсационный метод получения наполненных композиционных материалов/ /Пласт. массы. 1988. - № 11. - С. 13 - 14.

12. Кардаш М.М. Новая технология поликонденсационного наполнения полимерных композиционных материалов/ /Автореф. дис. канд. техн. наук. - Саратов, 1995. - 18 с.

13. Липатов Ю.С. Межфазные явления в полимерах. - Киев: Наукова думка, 1980. - 260 с.

14. Композиционные полимерные материалы. - Киев: Наукова думка, 1975. - 190 с.

15. Липатов Ю.С. Физико-химические основы наполненных полимеров. - М.: Химия, 1991. - 256 с.

16. Физико-химические свойства и структура полимеров/Ю.С. Липатов. - Киев: Наукова думка, 1977. - 148 с.

17. Тростянская Е.Б. Формирование промежуточного слоя в зоне контакта связующего с наполнителем/ /Пласт. массы. 1979. - № 7. - С. 17 - 19.

18. Термодинамические и структурные свойства граничных слоёв. - Киев: Наукова думка, 1976. - 160 с.

19. Эльтекова Н.А., Эльтеков Ю.А. Самоорганизация макромолекул на поверхности адсорбентов/ /Российский химический журнал. - 1995. - № 6. - С. 33 - 42

20. Бузетти К.Д., Кавецкий Г.Д., Болотина Л.М. Адсорбция фенольных соединений из растворов полисульфона/ /Пласт. массы. 1989. - № 10. - С. 80 - 82.

21. Быков В.Т., Глущенко В.Ю. Адсорбция из растворов и природа поверхности/ /Физическая адсорбция из многокомпонентных фаз. - М.: Наука, 1972. - С. 156-159

22. Ларионов О.Г., Курбанбеков Э. К вопросу об уравнении изотермы адсорбции из растворов/ /Физическая адсорбция многокомпонентных фаз. - М.: Наука, 1972. - С. 85-95

23. Ларионов О.Г. Некоторые особенности поведения адсорбционных растворов в микропористых сорбентах/ /Адсорбция в микропорах. - М.: Наука, 1983. - С. 70-74

24. Липатов Ю.С. Современные теории адсорбции полимеров на твёрдых поверхностях/ /Успехи химии. - 1981. - Т.50, вып.2. - С. 335 - 378.

25. Липатов Ю.С. Роль межфазных явлений в возникновении микрогетерогенности в многокомпонентных полимерных системах/ /ВМС. - 1975. - № 10, Т.17(А). - С.2358 -2365.

26. Скворцов А.М., Горбунов А.А. Конформация макромолекул в наполненных полимерах/ /ВМС. - 1986. - Т.28(А), № 9. - С.1941 - 1948.

27. Бирштейн Т.М., Борисов О.В. Адсорбция полимерных цепей на малых частицах и комплексообразование/ /ВМС. - 1986. - Т.28(А), № 11. - С.2265 -2271.

28. Липатов Ю.С., Тодосийчук Т.Т., Сергеева Л.М. Исследование толщины адсорбционных слоёв олигомеров на твёрдой поверхности/ /ВМС. - 1973. - Т.15 (А), № 10. - С.2243 -2248.

29. Эльтеков Ю.С. Уравнение изотермы адсорбции линейных макромолекул из растворов/ /Физическая адсорбция из многокомпонентных фаз. - М.: Наука, 1972. - С.214 - 221.

30. Эльтеков Ю.С. Влияние химии поверхностных наполнителей на адсорбцию полимеров/ /Поверхностные явления в полимерах. - Киев: Наукова думка, 1970. - С.43 - 52.

31. Ким В.С., Скачков В.В. Диспергирование и смешение в процессе производства и переработки пластмасс. - М.: Химия, 1988. - 240 с

32. Булатов М.А, Кононенко В.И., Сукин А.В. Полимеризационное наполнение - прогрессивный способ получения высоконаполненных композиционных материалов/ /Абразивные инструменты с полимерными и керамическими связующими. - Свердловск: Уральский рабочий, 1982.- С.80 - 84.

33. Баулин А.А., Краснощёков А.И., Деянова А.С. Электропроводящие ПЭ - композиции, полученные полимеризационным наполнением/ /Пласт. массы. 1982. - № 7. - С. 6-7.

34. А.с. 787411 СССР, МКИ С 07 F 7/08. Способ получения пероксидированных минеральных наполнителей для полимеров/ С.С. Иванчев, Н.С. Ениколопов, Б.В. Полозов (СССР). - 2546852/23-04; Заявл. 06.12.77; Опубл. 15.12.80/ / Открытия. Изобретения. - 1980. - № 46. - С.97.

35. Ефимова Е.П., Фролов О.К. Магнитные композиционные материалы - новые возможности и перспективы развития/ /Пласт. массы. - 1998. - № 5. - С. 6-7.

36. Артёменко С.Е., Кардаш М.М., Мальков Ю.Е. Кинетика отверждения термореактивных связующих в присутствии химических волокон/ /Пласт. массы. - 1988. - № 11. - С. 13-14.

37. Вольфсон С.А. Новые пути создания композиционных материалов/ /Журн. Всесоюзн. хим. общества. - 1989. №5. - С.5310-536

38. Новокшонова Л.А, Мешкова И.Н Каталитическая полимеризация на твёрдых поверхностях как метод введения наполнителей в полиолефины/ /ВМС. - 1994. - Т.36, № 4. - С.629 - 639.

39. Преображенская Т.И. Переработка пластических масс. Труды Свердловского научно-технического совещания по переработке и применению пластических масс в народном хозяйстве. М.: Химия 1966. - с. 308.- 312

40. Теория и практика технологий производства изделий из композиционных материалов и новых металлических сплавов - 21 век/ Труды международной конференции 30.01.01-2.02.01, МГУ.

41. Колесов С.В., Юмагулова Р.Х., Прокудина Е.М., Пузин Ю.И., Кузнецов С.И., Ионова И.А. Влияние титаноценхлорида на радикальную полимеризацию метилметакрилата / /ВМС. - 2003. - Т.45, № 2. - С.324 -328.

42. Недорезова П.М., Шевченко В.Г., Щеголихин А.Н., Цветкова В.И., Королев Ю.М. / /ВМС. - 2004. - Т.46, № 3. - С.426 -436.

43. Васнев В.А., Нафадзокова Л.Х., Тарасов А.И., Виноградова С.В., Лепендина О.Л.Влияние неорганических соединений металлов на синтез полибутилентерефталата и свойства образующихся композиций / /ВМС. - 2000. - Т.42, № 12. - С.2065 -2071.

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.