на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Органическая химия
p align="left">Моносахариды (от греческого monos: единственный, sacchar: сахар), -- органические соединения, одна из основных групп углеводов; самая простая форма сахара; являются обычно бесцветными, растворимыми в воде, прозрачными твердыми веществами. Некоторые моносахариды обладают сладким вкусом. Моносахариды -- стандартные блоки, из которых синтезируются дисахариды (такие, как сахароза) и полисахариды (такие, как целлюлоза и крахмал), содержат гидроксильные группы и альдегидную (альдозы) или кетогруппу (кетозы). Каждый углеродный атом, с которым соединена гидроксильная группа (за исключением первого и последнего) является хиральным, давая начало многим изомерным формам. Например, галактоза и глюкоза -- альдогексозы, но имеют различные химические и физические свойства. Моносахариды, как и все углеводы, содержат только 3 элемента (C,O,H).

К моносахаридам относятся:

Глюкомза («виноградный сахар», декстроза) встречается в соке многих фруктов и ягод, в том числе и винограда, отчего и произошло название этого вида сахара. Является шестиатомным сахаром (гексозой).

Фруктоза, или плодовый сахар -- моносахарид, который в свободном виде присутствует почти во всех сладких ягодах и плодах. Многие предпочитают заменять сахар не синтетическими препаратами, а природной фруктозой.

Галактоза -- один из простых сахаров. Отличается от глюкозы пространственным расположением водородной и гидроксильной групп у 4-го углеродного атома. Содержится в животных и растительных организмах, в том числе в некоторых микроорганизмах. Входит в состав молочного сахара. При окислении образует галактоновую, галактуроновую и слизевую кислоты. Хорошо растворима в воде

Полисахаримды -- общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров -- моносахаридов.

Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Они являются одним из основных источников энергии, образующейся в результате обмена веществ организма. Они принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Была установлена многообразная биологическая активность полисахаридов растительного происхождения: антибиотическая, противовирусная, противоопухолевая, антидотная[источник не указан 322 дня]. Полисахариды растительного происхождения выполняют большую роль в уменьшении липемии и атероматоза сосудов благодаря способности давать комплексы с белками и липо-протеидами плазмы крови.[1]

К полисахаридам относятся, в частности:

декстрин -- полисахарид, продукт гидролиза крахмала;

крахмал -- основной полисахарид, откладываемый, как энергетический запас у растительных организмов;

гликоген -- полисахарид, откладываемый, как энергетический запас в клетках животных организмов, но встречается в малых количествах и в тканях растений;

целлюлоза -- основной структурный полисахарид клеточных стенок растений;

галактоманнаны -- запасные полисахариды некоторых растений семейства бобовых, такие как гуаран и камедь рожкового дерева;

глюкоманнан -- полисахарид, получаемый из клубней конняку, состоит из чередующихся звеньев глюкозы и маннозы, растворимое пищевое волокно, уменьшающее аппетит;

амилоид -- применяется при производстве пергаментной бумаги.

Гликозимды -- органические соединения, молекулы которых состоят из двух частей: углеводного (пиранозидного или фуранозидного) остатка и неуглеводного фрагмента (т. н. агликона). В качестве гликозидов в более общем смысле могут рассматриваться и углеводы, состоящие из двух или более моносахаридных остатков. Преимущественно кристаллические, реже аморфные вещества, хорошо растворимые в воде и спирте.

Гликозиды представляют собой обширную группу органических веществ, встречающихся в растительном (реже в животном) мире и/или получаемых синтетическим путём. При кислотном, щелочном, ферментативном гидролизе они расщепляются на два или несколько компонентов -- агликон и углевод (или несколько углеводов). Многие из гликозидов токсичны или обладают сильным физиологическим действием, например гликозиды наперстянки, строфанта и другие.

Крахмамл -- полисахариды амилозы и амилопектина, мономером которых является альфа-глюкоза. Крахмал, синтезируемый разными растениями под действием света (фотосинтез) имеет несколько различных составов и структуру зёрен.

Амилоза (от греч. бmylon -- крахмал) -- один из основных полисахаридов крахмала, состоящий из линейных или слаборазветвлённых цепочек молекул глюкозы, соединённых связями между 1-м и 4-м углеродными атомами.

Амимлопектимн (от греч. бmylon -- крахмал, pзktes -- сбитый, сплочённый) -- один из основных полисахаридов крахмала, состоящий из разветвленных цепочек молекул глюкозы, соединённых связями как между 1-м и 4-м, так и 1-м и 6-м углеродными атомами.

Декстримн -- полисахарид, получаемый термической обработкой картофельного или кукурузного крахмала. Образуется из крахмала в ротовой полости человека под действием б-амилаз.

5.3 Пектиновые вещества. Эфиры целлюлозы метил-, карбоксиметил- и натрийкарбоксиэтилцеллюлоза). Растительные камеди

Пектимновые веществам (от греч. pektos -- свернувшийся, замёрзший) -- полисахариды, образованные остатками главным образом галактуроновой кислоты. Присутствуют во всех наземных растениях (особенно много в плодах) и в некоторых водорослях. Способствуют поддержанию в тканях тургор, повышают засухоустойчивость растений, устойчивость овощей и плодов при хранении. Используются в пищевой и фармацевтической промышленности как студнеобразующие вещества. Получают пектиновые вещества из яблочных выжимок, жома сахарной свёклы и т. п.

Эфиры целлюлозы, производные целлюлозы общей формулы [C6H7O2(OH)3-х(OR)х]n, где n - степень полимеризации; x - число групп ОН, замещенных в одном звене макромолекулы целлюлозы (степень замещения - СЗ); R - алкил, ацил или остаток минер, кислоты. Каждое звено макромолекулы содержит 3 группы ОН, которые способны вступать в реакции с образованием простых и сложных эфиров; в случае смешанных эфиры целлюлозы э. замещающие радикалы различны.

Наиболее распространены эфиры целлюлозы э.: простые - карбоксиметилцеллюлоза, метилцеллюлоза, этилцеллюлоза, а также метилгидроксипропилцеллюлоза, оксипропилцеллюлоза, цианэтилцеллюлоза; сложные - целлюлозы ацетаты, целлюлозы нитраты, а также ацетилфталилцеллюлоза, ацетопропионаты, ацетобутираты и сульфаты целлюлозы. Упомянутые эфиры целлюлозы э. производят во многие странах десятками и сотнями тысяч т в год.

Св-ва эфиров целлюлозы э. зависят главным образом от числа и, СЗ и типа заместителя R. Так, степень полимеризации (в среднем 150-500) значительно влияет преимущественно на прочностные и вязкостные свойства эфиры целлюлозы э., обеспечивая их пригодность для переработки. СЗ определяет их физических-механические и химический свойства. Средняя СЗ лежит в пределах 0-3; однако чаще СЗ рассчитывают не на одно, а на 100 элементарных звеньев макромолекул целлюлозы и обозначают (например, для триацетилцеллюлозы= 280-290). Регулируют СЗ изменением условий синтеза: концентрации алкилирующего или этерифицирующего агента, температуры, продолжительности и др.

Растворимость эфиры целлюлозы э. зависит от содержания и соотношения заместителей и свободный групп ОН. Например, ацетат целлюлозы, имеющий СЗ 0,5-0,8 и 1,5-1,8, раств. соответственно в воде и смеси ацетон - вода (7:3); ацетат целлюлозы со СЗ 2,2-2,6 растворим в ацетоне и метилцеллозольве, со СЗ > 2,6 - в метиленхлориде и смеси метиленхлорид - этанол (9:1). При увеличении длины цепи алкильного радикала гидрофобность эфиры целлюлозы э. повышается и они способны растворим в неполярных растворителях (например, бутил- и пропилцеллюлоза уже нерастворимы в воде и растворим в органических растворителях). Вообще растворимость эфиры целлюлозы э. в органических растворителях возрастает с повышением температуры и уменьшается с увеличением молекулярной массы.

С увеличением в заместителе числа атомов С для всех эфиры целлюлозы э. уменьшаются влагопоглощение, температуры размягчения и плавления. Сложные эфиры термически нестабильны и обладают низкой химический стойкостью к действию кислот и щелочей. Простые эфиры устойчивы в кислотах и щелочах и выдерживают нагревание до сравнительно высоких температур, не разлагаясь и не выделяя свободный кислот, вызывающих коррозию металлов. Сложные и некоторые простые эфиры целлюлозы э.- хорошие диэлектрики.

Для производства эфиры целлюлозы э. используют облагороженную хлопковую и древесную (сульфатную и сульфитную) целлюлозу. Выбор ее вида определяется областью применения того или иного эфира. Для повышения скорости и равномерности О-алкилирования и однородности эфиры целлюлозы э. независимо от способа их получения исходную целлюлозу обязательно предварительно активируют. В производстве простых эфиров целлюлозу обрабатывают раствором NaOH, в результате чего она набухает и приобретает повышенную реакционную способность (щелочная целлюлоза) вследствие облегчения диффузии компонентов этерифицирующей смеси внутрь материала. В производстве сложных эфиров целлюлозу обрабатывают уксусной или др. кислотой при повышенной температуре в парах либо растворами этих кислот. Обычно, чем выше температура активации, тем меньше ее продолжительность.

Простые эфиры целлюлозы э. получают в автоклавах при повышенной температуре взаимодействие щелочной целлюлозы с алкилхлоридами и (или) 3-и 4-членными гетероциклический соединение, напр, этилен- и пропиленоксидами, сультонами (пром. способы), диалкилсульфатами (лабораторная способ), непредельными соединение с двойными связями (например, акрилонитрил, акриламид). Так, О-алкилированием щелочной целлюлозы монохлоруксусной кислотой получают Na-соль карбоксиметилцеллюлозы, диэтиламиноэтилхлоридом -диэтиламиноэтилцеллюлозу, акрилонитрилом - цианэтилцеллюлозу, этилен- и пропиленоксидами - гидроксиэтил- и гидроксипропилцеллюлозы. Образование простых эфиров катализируется основаниями и всегда сопровождается побочными реакциями.

Сложные эфиры целлюлозы э. в промышлености получают:

1. Этерификацией целлюлозы кислородсодержащими не-органическое и карбоновыми (например, НСООН) кислотами. Этим способом получают нитраты, сульфаты и формиаты целлюлозы. Этерификация ее Н3РО4 в смеси с мочевиной дает фосфаты целлюлозы. Вследствие обратимости реакции применяют конц. кислоты и водоотнимающие добавки.

2. Действием на целлюлозу преимущественно ангидридов кислот в среде органическое растворителей или разбавителей в присутствии катализаторов (в основные минеральных кислот). Таким способом получают эфиры на основе карбоновых кислот жирного ряда С2 - С4 (например, ацетаты целлюлозы). Действием смесей ангидридов различные кислот или кислоты и ангидрида др. кислоты производят смешанные эфиры целлюлозы э. (например, ацетопропионаты и ацетобутираты целлюлозы).

Лабораторная способы получения сложных эфиров: действие на целлюлозу изоцианатов (Ц. э. карбаминовой кислоты - замещенные уретаны, карбанилаты целлюлозы); переэтерификация (бораты, фосфаты, стеарат целлюлозы). При синтезе эфиры целлюлозы э. в кислой среде побочные продукты почти не образуются.

Области применения сложных, а также простых и смешанных эфиры целлюлозы э. весьма разнообразны. Осн. направления использования: производство искусств. волокон (см. Ацетатные волокна, Вискозные волокна, Гидратцеллюлозные волокна, Медноаммиачные волокна); эфироцеллюлозных пластмасс (см. Этролы); различные пленок, полупроницаемых мембран (см. Пленки полимерные, Фотографические материалы); лакокрасочных материалов (см. Грунтовки, Лакокрасочные покрытия, Шпатлевки, Эфироцеллюлозные лаки). Ц. э. применяют также как загустители, пластификаторы и стабилизаторы глинистых растворов для буровых скважин, асбо- и гипсоцементных штукатурных смесей, обмазочных масс для сварных электродов, водоэмульсионных красок, красителей (при печати по тканям), зубных паст, парфюмерно-косметич. средств, водно-жировых фармацевтич. составов, пищевая продуктов (например, соков, муссов); связующие в литейных производствах; эмульгаторы при полимеризации; ресорбенты загрязнений в синтетич. моющих средствах; флотореагенты при обогащении различные руд; текстиль-но-вспомогат. вещества (например, аппретирующие и шлихтующие); компоненты клеевых композиций и др.

Растительные камеди -- вещества, выделяющиеся в виде прозрачных густеющих масс при повреждении растений (при механическом их поранении или при патологических процессах, вызываемых бактериями или грибками). Из выделенной растением аморфной массы можно извлечь камеди действием щелочи с последующим осаждением кислотой. Это -- гидрофильные вещества, в большинстве случаев хорошо растворимые в воде с образованием клейких растворов.

Камеди представляют собой нейтральные соли (кальциевые, магниевые, калиевые) высокомолекулярных кислот, состоящих из остатков гексоз, пентоз, метилпентоз и уроновых кислот. Из гексоз все камеди содержат D-галактозу (некоторые, кроме того, еще D-маннозу), из пентоз -- L-арабинозу (некоторые, кроме того, ксилозу). Метилпентоза -- рамноза, или фукоза, -- содержится не во всех камедях. Уроновая кислота всех камедей, кроме камеди трагаканта, -- это D-глюкуроновая кислота; камедь трагаканта содержит D-галактуроновую кислоту.

При нагревании камедей на водяной бане, иногда с разбавленными кислотами, т. е. в мягких условиях, происходит их «аутогидролиз», заключающийся в отщеплении молекул моносахаридов и олигосахаридов. Изучение строения камедей весьма осложнено трудностями получения их в чистом виде. Наиболее изучена аравийская камедь.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.