на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Создание эпоксидных композиций пониженной горючести с антистатическими и диэлектрическими свойствами
p align="left">При этом только в присутствии ФОМ достигается высокая степень отверждения без термообработки (табл. 3).

Таблица 3

Влияние состава композиции и параметров отверждения на степень превращения эпоксидного олигомера

Состав материала, масс. ч.,

на 100 масс. ч. ЭД-20

Степень отверждения, Х, %

Т=250С,

=24 ч

Т=900С,

=1 ч

Т=900С,

=3 ч

ЭД-20

90

94

99

ЭД-20+40ФД

86

88

92

ЭД-20+20ФОМ

99

99

-

ЭД-20+20ФД+20ФОМ

87

96

-

ЭД-20+30ТХЭФ+15ПЭПА

89

95

97

Эффективно для снижения горючести содержание в эпоксидной композиции фосфора - 5-6% масс. или хлора - 17%, что возможно при содержании в композиции 30 масс.ч. ПФА и 30 масс.ч. NH4Cl и 25-30% пластификаторов. Увеличение содержания компонентов нецелесообразно из-за высокой вязкости системы и потери ею текучести, даже при наличии пластификаторов.

Совместное введение в состав ЭД-20 наполнителей и пластификаторов ускоряет процесс отверждения, что проявляется в некотором уменьшении времени гелеобразования (фгел), общего времени отверждения (фотв) и максимальной температуры реакции отверждения (Тмах) практически для всех композиций (табл. 4).

Таблица 4

Параметры отверждения наполненных пластифицированных и непластифицированных композиций

Состав материала в масс. ч.

на 100 масс. ч. ЭД-20

Параметры отверждения

Х, %

(90°C,

2 часа)

фгел, мин

фотв, мин

Тмах, °C

ЭД-20+15ПЭПА

60

75

121

ЭД-20+30ПФА+5сажа+30ФОМ+ПЭПА

30/10

55/25

73/122

86/96

ЭД-20+30ПФА+5ТРГ+30ФОМ+ПЭПА

30/25

59/43

62/90

83/95

ЭД-20+30NH4Cl +5ТРг+30ФОМ+ПЭПА

30/25

69/57

52/79

76/94

ЭД-20+30 NH4Cl +5ТРГ+30ФД+ПЭПА

30/10

65/27

62/106

74/94

ЭД-20+30ПФА+5ГТ+25ФОМ+25ПЭПА

20

30

124

94

Примечание: в числителе данные для составов с 15% масс. ПЭПА, в знаменателе - с 25% масс. ПЭПА.

Это, видимо, связано с адсорбционным взаимодействием компонентов реакционной смеси с развитой поверхностью наполнителя. При введении наполнителя жидкоолигомерная система сначала переходит в неравновесное состояние, что объясняется частичным разрушением упорядоченных образований, существующих в исходных олигомерах, под действием энергетического взаимодействия их с твердой поверхностью. Увеличение содержания отвердителя до 25% ПЭПА, то есть сверх стехиометрического соотношения к эпоксидным группам связано с тем, что, как далее показано, некоторые из компонентов реагируют и с отвердителем, и между собой. При этом с увеличением содержания ПЭПА увеличиваются вследствие повышения экзотермичности процесса скорости процесса отверждения, что приводит к уменьшению жизнеспособности композиций (табл. 4). При большем содержании ПЭПА увеличивается степень сшитости матрицы.

Следовательно, изменением соотношения компонентов можно регулировать время гелеобразования составов в зависимости от запросов производства.

Степень превращения наполненных эпоксидных композиций после суток «холодного» отверждения составляет 74-86%. Поэтому для ее повышения и улучшения и стабилизации свойств продуктов отверждения проводили термообработку при 90оС в течение 1-3 часов, что приводит к возрастанию степени отверждения до 94-96 % (табл. 4).

Методом ИКС, ТГА и сканирующей калориметрии доказано наличие химического взаимодействия между эпоксидным олигомером, ФОМ, ФД и ТХЭФ. В ИК-спектрах композиций, содержащих пластификаторы ФД, ФОМ и ТХЭФ, отмечено появление новых пиков (рис. 2).

Рис.2. ИК-спектры: 1-ПЭПА; 2-ЭД-20; 3-ЭД-20+15ПЭПА; 4 - ЭД-20+30 ТХЭФ +15 ПЭПА; 5-ЭД-20+40ФД +15ПЭПА, 6-ЭД-20+20ФОМ+15ПЭПА

В спектрах эпоксидной композиции, содержащей ФД, определено наличие полосы поглощения при 1183 см -1, соответствующей валентным колебаниям -СО- простой эфирной связи группы -СН2-О-СН2, отсутствующей у ФД и ЭД-20,что свидетельствует о химическом взаимодействии компонентов (рис. 2).

В ИК-спектрах композиции ЭД-20, содержащей ФОМ, обнаружено отсутствие пика валентных колебаний связи -С=С- , принадлежащей ФОМ, и появление новых пиков (1150-1070 см-1) группы -С-О-С- алифатического эфира. Эти данные подтверждают взаимодействие ФОМ с олигомером по гидроксильным группам с раскрытием двойной связи.

Появление пика 1030 см-1 Р-О-С связи в спектрах состава, содержащего ЭД-20 и ТХЭФ, также свидетельствует об их химическом взаимодействии.

Эти выводы подтверждаются высокими значениями интегрального теплового эффекта образования эпоксидных композитов (табл. 5).

Таблица 5

Интегральный тепловой эффект образования эпоксидных композитов

Состав композиции, масс.ч.,

на 100 масс.ч. ЭД-20

Площадь теплового эффекта,

S, градс/г

Интегральный тепловой эффект,

Qр, Дж/г

ЭД-20+15ПЭПА

33456,0

906,7

ФД+ПЭПА

23609,0

639,8

ФОМ+ПЭПА

6952,6

188,4

ЭД-20+40ФД+15ПЭПА

5826,9

157,9

ЭД-20+20ФОМ+15ПЭПА

17261

368,5

ЭД-20+20ФД+20ФОМ+15ПЭПА

22711,0

615,5

Понимание общих закономерностей физико-химических процессов превращения полимеров в конечные продукты сгорания позволяет целенаправленно решать проблемы снижения их горючести. Поэтому оценивалось поведение материалов при воздействии на них повышенных температур в кислородсодержащей среде (в среде воздуха) методом ТГА.

Применяемые ЗГ относятся к достаточно термостойким соединениям.

По данным ТГА, введение исследуемых пластификаторов в эпоксидную смолу оказывает влияние на поведение при пиролизе и проявляется в том, что: повышается термоустойчивость материала, что подтверждается возрастанием температуры начала деструкции; увеличивается, а с ФД и ФОМ, значительно, энергия активации процесса деструкции; снижаются скорости потери массы (табл. 6). Высокие значения энергии активации также свидетельствуют о химическом взаимодействии компонентов.

Выявленное влияние ЗГ на термолиз эпоксидной смолы проявляется и в поведении материала при горении его на воздухе.

Образцы, содержащие ФД, ФОМ и ТХЭФ, не поддерживают горение при поджигании на воздухе (метод «огневой трубы») и потери массы составляют 0,8, 0,4 и 0,3% соответственно.

Таблица 6

Показатели пиролиза и горючести эпоксидных композиций, отвержденных ПЭПА (15 масс. ч.)

Состав,

масс. ч. на 100 масс.ч. ЭД-20

Температура начала деструкции, ТН, С

Выход карбонизованного остатка по завершении основной стадии пиролиза, % (масс.)

Энергия

активации основной стадии деструкции, ЕА,

кДж/моль

Потери массы при горении на воздухе, (метод «огневой трубы»), m, % (масс.)

ЭД-20

200

53 (390оС)

95

78

ЭД-20+40ФД

275

53 (345оС)

823

0,8

ЭД-20+20ФОМ

230

49 (365оС)

285

0,4

ЭД-20+30 ТХЭФ

210

54 (300 оС)

128

0,3

Определение класса горючести модифицированных композиций методом «керамической трубы» показало, что выделяющиеся продукты деструкции относятся к негорючим, так как температура при испытаниях не только не возрастает, но для всех образцов отмечено ее снижение относительно поддерживаемой в испытательной камере температуры (200єС), и минимальные потери массы связаны с некоторой деструкцией образца. Следовательно, в соответствии с ГОСТ 12.1.044-89 разработанные составы относятся к классу трудносгораемых, так как к этому классу относятся материалы, для которых t60оC и m60% (табл.7).

Таблица 7

Показатели горючести эпоксидных композиций, определенные по методу «керамическая труба»

Состав материала, масс. ч.,

на 100 масс. ч. ЭД-20

Приращение температуры, Т, оС

Потери массы, m, %

ЭД-20+15ПЭПА

+650

80

ЭД-20+40ФД+15ПЭПА

-20

0,15

ЭД-20+40ФОМ+15ПЭПА

-10

0,21

ЭД-20+20ФД+20ФОМ+15ПЭПА

-30

0,31

ЭД-20+40ФД+20ФОМ+15ПЭПА

-40

0,35

Данные термогравиметрического анализа (ТГА), показали, что влияние применяемых модификаторов в композиции проявляется в сле-дующем: увеличивается выход коксового остатка (КО), следовательно, уменьшается количество летучих продуктов (табл. 8) и температуры максимальных скоростей разложения смещаются в область более низких температур (рис. 3), что свидетельствует о возможности влияния на физико-химические процессы пиролиза полимера на начальной стадии его деструкции.

Таблица 8

Данные ТГА эпоксидных композиций

Состав, масс. ч.,

на 100 масс.ч. ЭД-20

Основные стадии пиролиза

Выход коксового остатка, %, при Т, 0С

, 0С

, %

200

300

400

500

ЭД-20+15ПЭПА

93

79

51

37

ЭД-20+30NН4Сl+

5ТРГ+30ФОМ+15ПЭПА

95

62

55

41

ЭД-20+30NН4Сl+

5ТРГ+30ТХЭФ+15ПЭПА

89

68

58

43

ЭД-20+30ПФА+

5ТРГ+30ФОМ+15ПЭПА

200-400

5-34

95

79

66

64

ЭД-20+30ПФА+5 сажа+30ФОМ+15ПЭПА

200-400

6-30

94

78,5

70

66

ЭД-20+30ПФА

+5ГТ+25ФОМ+25ПЭПА

94

63

47

39

ЭД-20+30ПФА+5ГТ

+25ФОМ+25ПЭПА

КОКС

94

89

85

78

Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.