на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Стандартизация измерения рН в неводных средах. Методы определения рН стандартных буферных растворов
p align="left">

Для решения ряда практически важных вопросов возникает необхо-димость сопоставления кислотности растворов в различных растворителях, приведение значений рНр к единому началу отсчета. Можно было бы полагать, что измерения, произведенные на рН-метре, откалиброванном по вод-ным стандартам, должны давать значения рН по отношению к единому стандарту, так как электрод сравнения остается неизменным и измеряемая э.д.с представляет собой разность потенциалов электродов, обратимых но отношению к ионам водорода, опущенных в стандартный водный и иссле-дуемый неводный растворы. Однако, как уже говорилось, наличие фазового потенциала не позволяет находить значения раНр, отнесенные к единому водному стандарту.

Как же сравнивать кислотность в двух различных растворителях? Как решить вопрос о том, какой раствор кислее -- водный с рН = 3 или спиртовой с тем же рНр -- 3? Вопрос о сопоставлении кислотности представляет большие трудности как принципиального, так и экспериментального характера. Эти затруднения пытались решать разными методами. Самой правильной является постановка вопроса о кислотности неводных растворен Бренстеда. Бренстед предлагает во всех растворах считать мерой кислотности абсолютную активность протона или величину, ей пропорциональную -- химический потенциал протона:

(2.2.1)

Принципиально определение абсолютной активности протона вполне возможно. Константа собственной кислотности кислоты равна активности протона, умноженной на активность основания и деленной на активность кислоты. При этом речь идет об абсолютной активности, т. е. об активности, отнесенной к единому стандартному состоянию:

Ka=aH+*aB/aA (2.2.2)

Заменяя абсолютные активности произведениями активностей, отнесенных к бесконечно разбавленному раствору в данной среде М, и единых коэффициентов активности ? 0 получим выражение

Ka= (2.2.3)

Откуда: aH+= (2.2.4)

Из этого выражения вытекает, что если бы можно было действительно найти константу собственной кислотности какой-то кислоты в вакууме и и , то можно было бы определить активность протона. Величины и можно определить экспериментально. Можно найти, сколько в данном растворителе кислоты и сколько основания, т. е. установить, в какой степени данная кислота продиссоциирована, найти концентрационные коэффициенты активности и и найти активность а*.

Основные затруднения состоят в определении единых коэффициентов активности кислоты и соответственно основания .

Мерой этих абсолютных коэффициентов активности является энергия переноса вещества из вакуума в данную среду, т. е. энергия их сольватации.

Следовательно, для того чтобы использовать в качестве единой меры кислотности активность протона, нужно знать собственную константу кис-лотности кислоты и знать энергии переноса кислоты и основания из вакуума в данную среду.

В настоящее время эти величины известны только очень приближенно, поэтому такой путь определения истинной активности протона еще не может быть осуществлен.

Если известно протонное сродство (работа присоединения протона к данному веществу в вакууме), то из него всегда можно вычислить константу собственной кислотности. Следовательно, некоторые возможности определения активности протона этим путем уже намечаются. Если раньше константа собственной кислотности была фиктивной мерой силы кислоты, то сейчас ее можно рассматривать как реальную меру. Применение этого метода затруднено только недостаточной точностью в определении протонного сродства и .

2.3 Метод Михаэлиса. Шкала рНHAc Конанта и Хелла

Трудности в определении активности протона привели к тому, что было предложено много других методов оценки кислотности в неводных растворах. Первой была попытка Михаэлиса и Митцутани, которые предложили оценивать кислотность в неводных растворах, измеряя э. д. с. цепи, включающей диффузионный и фазовый потенциал

Pt(H2) | H+ в воде | | Н+ в М | Pt(H2) (2.3.1)

и на основании э. д. с. этой цепи вычислять кислотность. Если бы не было дифузионного, и особенно фазового, потенциалов, то эту цепь, действи-тельно, можно было бы применять для оценки кислотности, потому что потенциалы электродов различаются настолько, насколько различаются между собой активности ионов лиония в этих двух растворах. На самом доле э. д. с. этой цепи определяется не только разностью активности ионов лиония, но и величиной фазового потенциала, который обычно направлен против потенциала, обусловленного различной активностью протонов. По-этому метод Михаэлиса и Митцутани непригоден для оценки абсолютной кислотности.

Конант и Хелл, исследуя кислотность в уксусной кислоте как раствори-теле, предложили измерять кислотность в такой цепи:

Ptхлоранил| Н+ в уксусной кислоте|| KCl в воде| Hg2Cl2,Hg (2.3.2)

Хлоранил представляет собой эквимолекулярную смесь С6(ОН)2С14 и С6С1402. С помощью этого вещества можно измерять кислотность очень кислых растворов. В воде потенциал хлоранилового электрода против кало-мельного равен 0,418 В. Конант и Хелл для своей цели приняли, что потен-циал хлоранилового электрода против каломельного равен не 0,418, а 0,566. Они считали, что разница на 0,148 В соответствует фазовому потенциалу, который возникает на границе уксусной кислоты и водного раствора, и изменению нормального потенциала хлоранилового электрода. Но это пред-положение произвольно. Эта разница очень плохо оправдана. Конант и Хелл приняли ее на том основании, что в результате введения поправки константа диссоциации пиридина в уксусной кислоте равна константе диссоциации у уксусной кислоты в воде. Равенство констант принято ими на основании изучения электропроводности растворов. Однако это предположение сомнительно.

Кислотность, определенную по Конанту и Хеллу, принято обозначать pHHAc.

2.4 Определение кислотности методом Гамметта

Основываясь на том, что, как свидетельствуют экспериментальные данные, константы кислотности оснований (катионных кислот) сравнительно-мало изменяются при переходе от растворителя к растворителю, Гамметт предложил оценивать кислотность любых растворов по степени превращения индикатора основания в его ионную форму.

Известно, что величина рН водных растворов может быть определена про помощи индикаторов. В основе индикаторного метода лежит уравнение

pH=pK+lg(aAi/aHAi) (2.4.1)

где aAi и aHAi активности ионной и молекулярной формы индикатора.

В случае, если индикатором является основание, уравнение приобре-тает вид:

pH=pK+lg(aBi/aBHi) (2.4.2)

Различия в окраске основания и катионной кислоты, соответствующей этому основанию, или кислоты и аниона этой кислоты позволяют установить кислотность. Метод основан на том, что по окраске оценивают концентрацию кислой и основной форм индикатора. Сравнение окраски в данном растворе с окраской раствора, содержащего предельную форму индикатора в условиях, когда индикатор полностью превращен либо в кис-лоту, либо в основание, производится в колориметре. Особенно удобны для этих целей одноцветные индикаторы, у которых одна из форм окрашена, а другая не окрашена.

Не будем подробно останавливаться на методике индикаторного опре-деления рН. Отметим только, что при правильном осуществлении этот метод определения рН достаточно точен. Однако применение индикаторного метода не исключает ошибок, связанных со стандартизацией рН. Кроме того, индикаторный метод имеет ряд специфических ограничении, с которыми следует считаться.

Во-первых, если раствор содержит окислители или восстановители, то пользоваться колориметрическим методом следует с осторожностью, так как при этом может произойти окисление индикатора, и окраска (и ее интенсивность) будет изменяться не за счет изменения рН, а за счет окисления индикатора. К тому же многие вещества одновременно являются кис-лотно-основными и окислительно-восстановительными индикаторами и реагируют на наличие в растворах окислительно-восстановительных систем.

Во-вторых, индикаторы ограниченно применимы в небуферных системач, так как каждый индикатор -- это или кислота., или основание, и прибавление их к небуферным системам создает определенную кислотность. В этих слу-чаях фактически измеряется та величина рН, которая создалась в результате растворения индикатора.

В-третьих, окраска индикатора изменяется в зависимости от ионной силы раствора.

В-четвертых, многие индикаторы реагируют с белками, поэтому в бел-ковых системах, в биологических средах индикаторный метод может при вести к так называемым белковым ошибкам.

Возвратимся к основному вопросу -- к определению единой кислот ности. Согласно Гамметту, окраска одного индикатора изменяется в различных растворителях только в связи с изменением абсолютной кислотности растворов, а константа индикатора основания в любом растворителе остается неизменной. Соотношение основной и кислой форм индикатора изменяется только в связи с изменением кислотности раствора. Свою функцию кислот-ности Гамметт обозначает Н0, так как индикаторы основания не имеют электрического заряда. По Гамметту

Н0=pKa+lg(cB/cBH+) (2.4.3)

где pKa - показатель константы диссоциации индикатора как катионной кислоты в воде. Эта константа принимается неизменной.

В дальнейшем были введены другие функции кислотности. В тех слу-чаях, когда применяется в качестве индикатора незаряженная кислота и соответствующее ей основание имеет отрицательный заряд, функцию кислотности обозначают Н(-).

Метод Гамметта чрезвычайно прост и не связан с измерением потен-циалов, не имеет осложнений в связи с возникновением потенциалов на границе двух фаз. Поэтому он представляет значительный интерес и нашел широкое применение.

Однако последние работы показали, что нет оснований считать, что в действительности величина Н0 передает кислотность неводных растворов. Предположение о том, что константа индикатора не изменяется при переходе от растворителя к растворителю, очень сомнительно.

Предположение Гамметта о неизменности констант кислотности индикаторов-оснований равносильно предположению, что константы кислотности оснований выражены через абсолютные активности, отнесенные к водному раствору как к стандарту.

Искомой величиной является абсолютная активность ионов лиония аМН+ отнесенная к водному раствору протонов (ионов гидроксония) как к стандарту. Константа кислотности основания через абсолютные активности выразится так:

КАосн=аВ+(М)(aB/aBH+) (2.4.4)

Заменив в уравнении (2.4.4) величины aB и aBH+ выражениями a=c получим:

KAосн=аH+(M)(cB (2.4.5)

где аH+(M) искомая абсолютная активность сольватированного протона, отнесенная к его состоянию в бесконечно разбавленном, водном растворе.

На основании уравнения (2.4.5) для КАосн запишем выражение для рКА:

pKA=-lgKAосн=-lgaH+(M)( cB (2.4.6)

Подставив это выражение в уравнение (2.4.3), получим:

(2.4.7)

Предположение Гамметта будет действительно правильным, если ока-жется, что Н0 будет равно только логарифму активности протонов в данном растворителе, отнесенному к единому стандартному состоянию, т. е. к бес-конечно разбавленному водному раствору. Но для этого нужно, чтобы выра-жение было равно нулю.

Упростим нашу задачу: представим, что растворы настолько разбавлены, что отношение концентрационных коэффициентов активности единице. Но и тогда в выражении остается отношение единых коэф-фициентов активности ; они не зависят от концентрации. В этом случае выражение для Н0 примет вид:

Н0= (2.4.8)

Из этого выражения следует, что Н0 не равно логарифму активности протона, а отличается от него на величину логарифма отношения коэффициентов активности заряженной и незаряженной форм индикатора т. е. зависит от того, какова энергия взаимодействия с растворителем иона и нейтральной молекулы индикатора. При стандартизации по отношению к бесконечно разбавленному водному раствору величины и определяются работой переноса ионов ВН+ и соответственно молекул В из среды М в воду. Таким образом, предположение, что Н0 равно -lgaH+(M) будит справедливо только в том случае, если влияние растворителя на катион основания и молекулу основания индикатора одинаково.

Но все количественные данные, имеющиеся по этому поводу, говорят о том, что это не так.

Шварценбах пытался сравнить ход изменения величины Н0 и величины Н(-) в зависимости от свойств растворителей. В соответствии со сказанным ранее величина Н(-) будет выражена через единые коэффициенты активности так: (2.4.9)

Страницы: 1, 2, 3, 4



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.