на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Усовершенствование адресной доставки БАВ к отдельным органам и клеткам-мишеням
ервые специальные технические средства для реализации ЭХА (диафрагменные электрохимические реакторы) были разработаны в 1974 - 1975гг. В.М. Бахиром и его коллегой Ю.Г. Задорожним. В течение почти 20 лет продолжалась напряженная работа по созданию оптимальной конструкции реактора для электрохимической обработки пресной воды и разбавленных водных растворов, которая в конце 80-х - начале 90-х годов завершилась созданием принципиально новой конструкции - проточного электрохимического модульного элемента ПЭМ-1. Но широкое коммерческое использование технологических процессов с применением электрохимически активированных растворов и воды стало возможным лишь в последние 7 - 8 лет благодаря появлению промышленных электрохимических систем нового типа на основе проточных электрохимических модульных элементов третьего поколения (ПЭМ-3) и реакторов РПЭ в виде блоков элементов ПЭМ-3 различной конфигурации, также созданных вышеназванными изобретателями. Отличия элемента ПЭМ от известных электрохимических реакторов состоят в следующем:

Элемент ПЭМ является модульным, имеет малые габариты и вес, в сочетании с высокой производительностью и экономичностью, что позволяет использовать его как в промышленных, так и в бытовых технических электрохимических системах. Диафрагма элемента ПЭМ изготовлена из керамики на основе оксидов циркония и алюминия и является очень прочной; она обладает малой фильтрационной способностью, что исключает физическое смешивание катодных и анодных объемов воды, выдерживает трансмембранный градиент давления до 1 атм. при сохранении постоянных размеров электродных камер. Диафрагма элемента ПЭМ обладает способностью к адсорбции на поверхности, обращенной к аноду, частиц, заряженных положительно, а на поверхности, обращенной к катоду - отрицательно заряженных частиц, что обусловливает снижение ее электрического сопротивления в разбавленных водных растворах и пресной воде и тем самым снижает расход электроэнергии, а также обеспечивает возможность длительной работы при градиентах давления различных знаков между электродными камерами, что позволяет использовать диафрагму как ионселективную перегородку в электрохимическом реакторе. Электродные камеры элемента ПЭМ представляют собой кольцевые удлиненные пространства между цилиндрическими поверхностями электродов и диафрагмы и имеют соотношение размеров, которое позволяет обеспечить одинаковую среднюю скорость движения микрообъемов жидкости в каждом из поперечных сечений, а также создают условия для соприкосновения возможно большего количества микрообъемов воды с поверхностью электрода, т.е. с областью ДЭС. Оптимальное сочетание длины и ширины электродных камер в элементе ПЭМ гарантирует отсутствие отрицательного влияния газонаполнения растворов в электродных камерах на энергетические и функциональные характеристики элемента ПЭМ при высокой плотности тока и малом протоке жидкости. Элементы ПЭМ в устройствах для электрохимической обработки воды можно соединять гидравлически не только параллельно, но и последовательно в единую гидравлическую цепь без разрыва потока, что невозможно при использовании известных электрохимических реакторов; при этом в цепь можно включать произвольно и в любом порядке как анодные, так и катодные камеры различных элементов ПЭМ, помещая между ними при необходимости вспомогательные устройства (флотационные, каталитические реакторы, системы для регулирования давления, скорости, температуры потоков и т.д.). Элементы ПЭМ можно соединять электрически параллельно, последовательно или последовательно-параллельно, что дает возможность не меняя гидравлическую конфигурацию легко переходить при необходимости от схемы биполярного электролизера к схеме монополярного или к схеме биполярно-монополярного электролизера. В элементах ПЭМ создаются условия, при которых в течение долей секунды большая часть микрообъемов воды подвергается обработке в поле высокой напряженности ДЭС, что позволяет получать у анода воду с ярко выраженными свойствами акцептора электронов (оксидантная вода), в то время, как у катода образуется вода со свойствами донора электронов (антиоксидантная вода). И анолит и католит являются разновидностями воды с повышенной электрической активностью, которая проявляется в последующих физико-химических или биохимических реакциях не только как самостоятельный фактор, но также как катализатор активности того небольшого количества синтезированных в процессе электрохимического воздействия продуктов анодных или катодных реакций.

Различные продукты восстановления можно получать, пользуясь методом электролитического восстановления. В зависимости от потенциала на электродах можно получать различные вещества. Впервые нитробензол был восстановлен в анилин с помощью сернистого аммония в 1842 г. Н.Н. Зининым. Это открытие сыграло важнейшую роль в развитии химической технологии, особенно в области химии красителей, медикаментов и фотохимикатов. Ароматические нитросоединения в зависимости от условий восстановления дают различные продукты. Ароматические амины являются конечными продуктами восстановления. Обычно их получают в кислой среде. В нейтральной, щелочной и слабокислой средах можно получить различные промежуточные продукты восстановления. Ниже приведена схема восстановления нитросоединений:

В нейтральной и кислой средах идут реакции 1-4, причем в кислой среде не удается выделить промежуточные продукты. В нейтральной среде можно выделить нитрозобензол и фенилгидроксиламин. В щелочной среде нитро- и нитрозобензолы конденсируются с фенилгидразином и идут реакции 5-9.

2. Механизм реакции

1. При растворении в воде (или расплавлении) электролиты распадаются на положительно и отрицательно заряженные ионы (подвергаются электролитической диссоциации).

2. Под действием электрического тока катионы (+) двигаются к катоду (-), а анионы (-) - к аноду (+).

3. Электролитическая диссоциация - процесс обратимый (обратная реакция называется моляризацией).

4. Степень электролитической диссоциации (б) зависит от природы электролита и растворителя, температуры и концентрации. Она показывает отношение числа молекул, распавшихся на ионы (n) к общему числу молекул, введенных в раствор (N).

б = n / N 0< б <1

Механизм электролитической диссоциации ионных веществ

При растворении соединений с ионными связями (например, NaCl) процесс гидратации начинается с ориентации диполей воды вокруг всех выступов и граней кристаллов соли. Ориентируясь вокруг ионов кристаллической решетки, молекулы воды образуют с ними либо водородные, либо донорно-акцепторные связи. При этом процессе выделяется большое количество энергии, которая называется энергией гидратации. Энергия гидратации, величина которой сравнима с энергией кристаллической решетки, идет на разрушение кристаллической решетки. При этом гидратированные ионы слой за слоем переходят в растворитель и, перемешиваясь с его молекулами, образуют раствор.

Механизм электролитической диссоциации полярных веществ

Аналогично диссоциируют и вещества, молекулы которых образованы по типу полярной ковалентной связи (полярные молекулы). Вокруг каждой полярной молекулы вещества (например, HCl), определенным образом ориентируются диполи воды. В результате взаимодействия с диполями воды полярная молекула еще больше поляризуется и превращается в ионную, далее уже легко образуются свободные гидратированные ионы.

Электролиты и неэлектролиты

Электролитическая диссоциация веществ, идущая с образованием свободных ионов объясняет электрическую проводимость растворов.

Процесс электролитической диссоциации принято записывать в виде схемы, не раскрывая его механизма и опуская растворитель (H2O), хотя он является основным участником.

CaCl2 ? Ca2+ + 2Cl- KAl(SO4)2 ??K+ + Al3+ + 2SO42- HNO3 ? H+ + NO3- Ba(OH)2 ? Ba2+ + 2OH

Из электронейтральности молекул вытекает, что суммарный заряд катионов и анионов должен быть равен нулю. Например, для

Al2(SO4)3 -- 2 * (+3) + 3 * (-2) = +6 - 6 = 0 KCr(SO4)2 -- 1 * (+1) + 3 * (+3) + 2 * (-2) = +1 + 3 - 4 = 0

Сильные электролиты

Это вещества, которые при растворении в воде практически полностью распадаются на ионы. Как правило, к сильным электролитам относятся вещества с ионными или сильно полярными связями: все хорошо растворимые соли, сильные кислоты (HCl, HBr, HI, HClO4, H2SO4,HNO3) и сильные основания (LiOH, NaOH, KOH, RbOH, CsOH, Ba(OH)2,Sr(OH)2,Ca(OH)2).

В растворе сильного электролита растворённое вещество находится в основном в виде ионов (катионов и анионов); недиссоциированные молекулы практически отсутствуют.

Слабые электролиты

Вещества, частично диссоциирующие на ионы. Растворы слабых электролитов наряду с ионами содержат недиссоциированные молекулы. Слабые электролиты не могут дать большой концентрации ионов в растворе.

К слабым электролитам относятся: 1) почти все органические кислоты (CH3COOH, C2H5COOH и др.); 2) некоторые неорганические кислоты (H2CO3, H2S и др.); 3) почти все малорастворимые в воде соли, основания и гидроксид аммония (Ca3(PO4)2; Cu(OH)2; Al(OH)3; NH4OH); 4) вода. Они плохо (или почти не проводят) электрический ток.

СH3COOH ? CH3COO- + H+ Cu(OH)2 ? [CuOH]+ + OH- (первая ступень) [CuOH]+ ? Cu2+ + OH- (вторая ступень) H2CO3 ? H+ + HCO- (первая ступень) HCO3- ? H+ + CO32- (вторая ступень)

Неэлектролиты

Вещества, водные растворы и расплавы которых не проводят электрический ток. Они содержат ковалентные неполярные или малополярные связи, которые не распадаются на ионы. Электрический ток не проводят газы, твердые вещества (неметаллы), органические соединения (сахароза, бензин, спирт).

Степень диссоциации. Константа диссоциации

Концентрация ионов в растворах зависит от того, насколько полно данный электролит диссоциирует на ионы. В растворах сильных электролитов, диссоциацию которых можно считать полной, концентрацию ионов легко определить по концентрации (c) и составу молекулы электролита (стехиометрическим индексам). Концентрации ионов в растворах слабых электролитов качественно характеризуют степенью и константой диссоциации. Степень диссоциации (б) - отношение числа распавшихся на ионы молекул (n) к общему числу растворенных молекул (N):

б = n / N

и выражается в долях единицы или в % (б = 0,3 - условная граница деления на сильные и слабые электролиты).

3.Основные реагенты и их подготовка

Химические реактивы (реагенты химические) -- химические препараты, предназначенные для химического анализа научно-исследовательских, различных лабораторных работ. В большинстве случаев химические реактивы представляют собой индивидуальные вещества; однако к реактивам относят и некоторые смеси веществ (например, петролейный эфир). Иногда реактивами называются растворы довольно сложного состава специального назначения (например, реактив Несслера -- для определения аммиака). По степени чистоты и назначению в России различают и соответственно маркируют химические реактивы: особой чистоты (о.ч.), химически чистые (х.ч.), чистые для анализа (ч.д.а.), чистые (ч.), очищенные (очищ.), технические продукты расфасованные в мелкую тару (техн.). Чистота химических реактивов в России регламентируется Государственными стандартами (ГОСТ) и техническими условиями (ТУ).

Многие химические реактивы специально производятся для лабораторного использования, но находят применение и очищенные химические продукты, выпускаемые для промышленных целей. Химические реактивы разделяют также на группы в зависимости от их состава: неорганические, органические реактивы, реактивы, содержащие радиоактивные изотопы, и др. По назначению выделяют, прежде всего, аналитические реактивы, а также химические индикаторы, органические растворители. Ценность и практическое значение аналитических реактивов определяются главным образом их чувствительностью и селективностью. Чувствительность химических реактивов -- это наименьшее количество или наименьшая концентрация вещества (иона), которые могут быть обнаружены или количественно определены при добавлении реактива. Например, ион магния при концентрации 1,2 мг/л даёт ещё заметный осадок после прибавления растворов динатрийфосфата и хлорида аммония. Имеются значительно более чувствительные реактивы. Специфическими считаются такие реагенты, которые дают характерную реакцию с анализируемым веществом или ионом в известных условиях, независимо от присутствия других ионов. Специфичных реагентов известно очень мало (например, крахмал, применяемый для обнаружения иода). В аналитической химии приходится иметь дело главным образом с селективными и групповыми реагентами. Селективный реагент взаимодействует с небольшим числом ионов. Групповой реагент применяется для одновременного выделения многих ионов. Селективные аналитические реагенты представляют собой преимущественно сложные органические соединения, способные к образованию характерных внутрикомплексных соединений с ионами металлов. Большое значение в неорганическом анализе имеют такие органические реагенты, как 8-оксихинолин, дифенилтиокарбазон («дитизон»), a-бензоиноксим, 1-нитрозо-2-нафтол, диметилглиоксим, триокси-флуороны, комплексон III (см. Комплексоны), некоторые оксиазосоединения, дитиокарбаминаты, диэтилдитиофосфат, диантипирилметан и др. производные пиразолона. Известно много реагентов для органического функционального анализа. Например, фенилгидразин, 2,4-динитрофенилгидразин, семикарбазид и тиосемикарбазид применяются для качественного и количественного определения альдегидов и кетонов.

4. Методы проведения процесса

Метод анализа, основанный на способности заряженных частиц к передвижению во внешнем электрическом поле называют
электрофорезом (от “электро” и греческого phoresis -- перенесение).

Электролиз относится к методам разделения без превращения веществ, на основе заряда частиц. По технике выполнения метод аналогичен хроматографии, поэтому и рассматривается в этой главе.

Рис.4.1. Схема прибора для электрофореза.

Нередко под электрофорезом понимают перемещение коллоидных частиц или макромолекул, в отличие от иовофореза - перемещения неорганических ионов малого размера. Передвижение частиц при электрофорезе зависит от ряда факторов, основными из которых являются: напряженность электрического поля; величина электрического заряда; скорость и размер частицы; вязкость, рН и температура среды, а также продолжительность электрофореза.

Страницы: 1, 2, 3, 4



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.