на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Химическая термодинамика
p align="left">Так как тепловые эффекты реакций зависят от условий их протекания, то для проведения термохимических расчётов нужны термохимические величины, отнесённые к каким-то одинаковым условиям. В противном случае данные будут несопоставимы. За такие условия принимаются стандартные условия. Если вещество находится при стандартных условиях, его состояние называют стандартным состоянием. За стандартное состояние принимают устойчивое состояние вещества при Т = 298 К и Р = 101325 Па. Поэтому тепловой эффект реакции в стандартных условиях обозначают ?H298.

2.2 Закон Гесса. Уравнение Кирхгофа

Закон Гесса утверждает:

Тепловой эффект химической реакции зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от её пути.

Из закона Гесса вытекает ряд следствий:

Тепловой эффект прямой реакции равен по величине и противоположен по знаку тепловому эффекту обратной реакции. Из этого следует, что если прямая реакция экзотермическая, то обратная - эндотермическая.

Если совершаются две реакции, приводящие из двух различных начальных состояний (Н1 и Н2) к одному и тому же конечному состоянию (К), то разность между тепловыми эффектами этих реакций равна тепловому эффекту превращения одного начального состояния в другое.

Если совершаются две реакции, приводящие из одного начального состояния (Н) к двум разным конечным состояниям (К1 и К2), то разность между тепловыми эффектами этих реакций равна тепловому эффекту превращения одного конечного состояния в другое.

?H1 = -?H2 ?H12 = ?H1 - ?H2 ?H12 = ?H1 - ?H2

Закон Гесса и его следствия позволяют рассчитывать тепловые эффекты некоторых реакций. Гораздо большее значение для расчётов тепловых эффектов любых реакций имеет правило, вытекающее из закона Гесса.

Для расчёта энтальпий реакций при стандартных условиях ?H298 необходимо знать энтальпии образования реагирующих веществ и продуктов реакции ?fHo298 . Пусть необходимо рассчитать стандартную энтальпию реакции

n N + m M = d D + g G .

Воспользуемся правилом:

Стандартная энтальпия химической реакции равна разности энтальпий образования продуктов реакции и энтальпий образования исходных веществ с учётом коэффициентов перед веществами в уравнении реакции, т.е.

?H298=[d•?fHo298(D)+g•?fHo298(G)] - [n•?fHo298(N)+m•?fHo298(M)].

Это же правило можно использовать для расчёта стандартных изменений и других функций состояния, например, для расчёта изменения энтропии химической реакции:

?S298=[d•So298(D)+g•So298(G)] - [n•So298(N)+m•So298(M)].

В этом случае из таблицы термодинамических величин нужно взять стандартные энтропии веществ So298.

Описанный подход не применим для расчёта изменения функций состояния системы для нестандартных условий, так как отсутствуют необходимые для такого расчёта справочные данные. В этом случае необходимо воспользоваться уравнением Кирхгофа, которое устанавливает зависимость изменения энтальпии или энтропии реакции от температуры:

?HT = ?H298 + ?a•(T - 298) + ?b/2•(T2 - 2982) + ?c/3•(T3 - 2983) -?c'•(1/T - 1/298),

?ST = ?S298 + ?a•ln(T/298) + ?b•(T - 298) + ?c/2•(T2 - 2982) -?c'/2•[(1/T2 - 1/2982)] .

Здесь ?a, ?b, ?c, ?c' - изменения соответствующих коэффициентов в химической реакции. Для расчёта этих величин необходимо в справочнике найти коэффициенты a, b, c, c' и рассчитать изменения по общепринятой в термодинамике методике. Например,

?a=[d•a(D)+g•a(G)] - [n•a(N)+m•a(M)].

Для расчёта изменения энергии Гиббса ?G химической реакции следует воспользоваться формулой

?GT = ?HT - T • ?ST ,

где Т - любая (стандартная или нестандартная) температура. При расчётах по последней формуле необходимо использовать значения ?H и ?S, соответствующие этой температуре.

2.3 Расчёты изменения термодинамических функций химических реакций

Проведём расчёт изменений энтальпии, энтропии и энергии Гиббса химической реакции

4 СО(г) + 2 SO2(г) = S2(г) + 4 CO2(г)

для стандартной (298К) и нестандартной (500К) температур. Перед началом расчётов необходимо ещё раз убедиться в том, что реакция уравнена.

Рассчитаем сначала ?H298 , ?S298 и ?G298.

?H298=[?fHo298(S2)+4•?fHo298(CO2)]- [4•?fHo298(CO)+2•?fHo298(SO2)]=[128,37+4• (-393,51)]-[4• (-110,53) +2• (-296,90)]= - 409,75 КДж.

?S298=[ So298(S2)+4•So298(CO2)] - [4•So298(CO)+2•So298(SO2)] =(228,03+4•213,66)-(4•197,55+2•248,07) = - 203,67 Дж/К.

?G298=?H298-298•?S298=-409750 - 298•(-203,67)= - 349056 Дж.

Расчёт показывает, что изучаемая экзотермическая реакция (знак энтальпии) при стандартных условиях может протекать самопроизвольно (знак энергии Гиббса).

Для расчёта нестандартных величин по уравнениям Кирхгофа требуется рассчитать ?a, ?b, ?c, ?c'. Для удобства и компактности расчётов составим таблицу 1.

Таблица 1 - Расчёт ?a, ?b, ?c, ?c'

Номер строки

Вещество

Cp = f(T), Дж/моль•К

a

b•103

c'•10-5

c•106

1

S2

36,11

1,09

-3,51

0

2

CO2

44,14

9,04

-8,54

0

3

4 CO2

176,56

36,16

-34,16

0

4

?кон a,b,c,c'

212,67

37,25

-37,67

0

5

CO

28,41

4,10

-0,46

0

6

4 CO

113,64

16,40

-1,84

0

7

SO2

46,19

7,87

-7,70

0

8

2 SO2

92,38

15,74

-15,40

0

9

?исх a,b,c,c'

206,02

32,14

-17,24

0

10

?a,?b,?c,?c'

6,65

5,11

-20,43

0

Строки 1, 2, 5 и 7 содержат справочные значения всех коэффициентов. Данные строк 3, 6 и 8 являются результатом умножения чисел в строках 2, 5 и 7 на соответствующий множитель (коэффициент перед данным веществом в уравнении реакции). Цифры в 10-й строке - результат вычитания данных 9-й строки из данных 4-й строки. Коэффициент а для всех веществ имеет истинное значение. Остальные коэффициенты либо увеличены, либо уменьшены в 10n раз. Это сделано для компактности таблицы 1 (общепринятый способ представления табличных данных). Истинные значения коэффициентов b, c, c' равны значащим цифрам из таблицы 1, умноженным на 10-n, т.е. знак показателя степени множителя следует изменить на противоположный. Коэффициент с для всех веществ изучаемой реакции равен нулю. Рассчитаем ?H500.

?H500 = ?H298 + ?a • (500-298) + ?b/2 • ( 5002 - 2982 ) + ?c/3 • ( 5003 - 2983 ) - ?c' • ( 1/500 - 1/298 ) = - 409750 + 6,65 • ( 500 - 298 ) + 5,11 • 103/2 • ( 5002 - 2982) - (-20,43•105)•(1/500 -1/298) =-409750+1343+412-2770= -410765 Дж.

Видно, что рассчитанное значение незначительно отличается от стандартного.

Рассчитаем ?S500.

?S500 = ?S298 + ?a•ln(500/298) + ?b•(500 - 298) + ?c/2•(5002 - 2982) - ?c'/2•[(1/5002 - 1/2982)] = - 203,67 + 6,65•ln(500/298)+ 5,11•10-3 ( 500 - 298 ) - (- 20,43•105/2) • ( 1/5002 - 1/2982 ) = -203,67 + 3,44 + 1,03 - 7,42 = -206,62 Дж/моль•К.

Найдём изменение энергии Гиббса ?G500.

?G500 = ?H500 - 500 • ?S500 = -410765-500• (-206,62) = -307455 Дж.

Изучаемая реакция может протекать самопроизвольно и при 500 К.

3. Химическое равновесие

3.1 Константа химического равновесия

Все химические реакции в той или иной мере обратимы, т.е. не идут до конца, до полного превращения исходных веществ в продукты. В реакционной смеси всегда происходит как прямая, так и обратная реакции. По мере расходования исходных веществ скорость прямой реакции снижается, по мере накопления продуктов возрастает скорость обратной реакции. Когда эти скорости сравниваются, устанавливается динамическое равновесие: не происходит ни накопления, ни расходования исходных веществ и продуктов. Суммарная скорость прямой и обратной реакций будет равна нулю. Такое состояние системы называется состоянием химического равновесия.

С термодинамической точки зрения состояние равновесия характеризуется равенством нулю изменения энергии Гиббса реакции ?G = 0. При этом подразумевается, что энергия Гиббса является функцией не только температуры и давления, но и количеств всех веществ, входящих в систему.

Количественной характеристикой химического равновесия служит константа химического равновесия. В зависимости от того, в какой системе протекает химическая реакция, константа равновесия может выражаться по-разному.

Пусть в системе протекает обратимая химическая реакция между газообразными веществами N и M и образуются газообразные вещества D и G.

n N + m M - d D + g G .

Константа химического равновесия в этом случае может быть найдена как

КР = .

В этой формуле все Рi - парциальные давления пара всех компонентов равновесной газовой смеси. Размерность КР в соответствии с формулой будет [Паd+g-n-m]. Если какое-то вещество не газообразное, например, вещество М - твёрдое, то, учитывая, что давление пара над твёрдым веществом постоянно, выражение для константы равновесия примет вид

КР = .

В соответствии с этим изменится и размерность константы скорости - [Паd+g-n].

Если рассматриваемая реакция протекает в растворе, то константу химического равновесия выражают через равновесные молярные концентрации

КС = .

Соответственно изменится и размерность [(моль/л)d+g-n-m].

Обе эти константы равновесия связаны уравнением

КР = КС• (RT)d+g-n-m.

Из этого уравнения видно, что если реакция протекает без изменения числа газообразных молекул, то КР = КС.

Численное значение константы химического равновесия характеризует глубину протекания прямой и обратной реакций. Так, если К>>1, это означает, что преимущественно протекает прямая реакция. Если же К<<1, то при данных условиях глубже протекает обратная реакция.

Константа химического равновесия связана с термодинамическими потенциалами и может быть рассчитана через их значения:

ln KP = - ,

ln KC = - ,

lnKP = -,

lnKC = -.

Рассчитаем константу химического равновесия реакции 4 СО(г) + 2 SO2(г) = S2(г) + 4 CO2(г) при стандартной и нестандартной (500 К) температурах. Воспользуемся для этого уравнением, связывающим КР и ?G.

ln KP(298) = - ( - 349056/8,314•298). Отсюда КР = 1,535•1061 Па-1.

ln KP(500) = - ( - 307455/8,314•500). Отсюда КР = 1,321•1032 Па-1.

3.2 Смещение химического равновесия

Достигнув состояния химического равновесия, система будет находиться в нём до тех пор, пока не будут изменены внешние условия. Это приведёт к изменению параметров системы, т.е. к сдвигу химического равновесия в сторону одной из реакций. Для качественного определения направления смещения равновесия в химической реакции служит принцип Ле-Шателье - Брауна:

Если на систему, находящуюся в равновесии, оказать внешнее воздействие, т.е. изменить условия, при которых система находилась в равновесии, то в системе с большей скоростью начнут протекать процессы, УМЕНЬШАЮЩИЕ оказанное воздействие.

На состояние химического равновесия наибольшее влияние оказывают концентрация, давление, температура.

Как видно из выражения для константы скорости реакции, увеличение концентраций исходных веществ N и M приводит к возрастанию скорости прямой реакции. Говорят, что равновесие сдвинулось в сторону прямой реакции. Наоборот, увеличение концентраций продуктов смещает равновесие в сторону протекания обратной реакции.

При изменении общего давления в равновесной смеси парциальные давления всех участников реакции изменяются в одинаковое число раз. Если в реакции число моль газов не изменяется, как, например, в реакции H2 + Cl2 - 2 HCl, то состав смеси остаётся равновесным и равновесие не смещается. Если же число моль газов в реакции изменяется, то состав смеси газов в результате изменения давления станет неравновесным и одна из реакций начнёт протекать с большей скоростью. Направление смещения равновесия в этом случае зависит от того, увеличилось или уменьшилось число моль газов.

Рассмотрим, к примеру, реакцию

N2 + 3 H2 - 2 NH3

Все участники этой реакции - газы. Пусть в равновесной смеси увеличили общее давление (сжали смесь). Равновесие нарушится, в системе должны начаться процессы, которые приведут к уменьшению давления. Но давление пропорционально числу ударов молекул о стенки, т.е. числу молекул. Из уравнения реакции видно, что в результате протекания прямой реакции число молекул газов уменьшается с 4 моль до 2 моль, а в результате обратной соответственно увеличивается. Следовательно, уменьшение общего давления произойдёт, если равновесие сместится в направлении протекания прямой реакции. При уменьшении общего давления в этой системе равновесие сместится в направлении протекания обратной реакции, приводящей к увеличению числа молекул газов, т.е. к увеличению давления.

В общем случае при повышении общего давления равновесие смещается в сторону реакции, приводящей к уменьшению числа молекул газообразных веществ, а при уменьшении давления - в сторону реакции, в которой увеличивается число молекул газов.

Для определения направления смещения равновесия при изменении температуры системы необходимо знать тепловой эффект реакции, т.е. экзотермическая данная реакция или эндотермическая. При этом нужно помнить, что при протекании экзотермической реакции теплота выделяется и температура повышается. При протекании эндотермической реакции температура падает за счёт поглощения теплоты. Следовательно, при повышении температуры равновесие всегда смещается в сторону эндотермической реакции, а при понижении - в сторону экзотермической реакции. Например, в системе, где протекает обратимая реакция

N2 + 3 H2 - 2 NH3, ?H298 = - 92,4 КДж/моль.

При повышении температуры равновесие сместится в сторону обратной (эндотермической) реакции, а при понижении температуры - в сторону прямой реакции, которая экзотермическая.

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.