на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Компьютерные сети и сетевые технологии
p align="left">mi -- количество кадров в секунду, отправляемых в сеть i-м узлом;

f -- максимально возможная пропускная способность сегмента, равная, как было указано выше 14880 кадр/с.

Имитационное моделирование сети Ethernet и исследование её работы с помощью анализаторов протоколов показали, что при коэффициенте загрузки S>0,5 начинается быстрый рост числа коллизий и, соответственно, увеличивается время ожидания доступа к сети.

Рекомендуемая величина коэффициента загрузки S для сети, использующих стандарт Ethernet, должна быть:

S0,3 (6)

Экспериментальные данные показали, что каждый из компьютеров передаёт в сеть в среднем от 500 до 1000 кадров в секунду. Таким образом, коэффициент загрузки сегмента равен:

(7)

После расчета коэффициент загрузки сети Ethernet рассчитываются значения PDV, удовлетворяющего условию:

PDV 575 (8)

а также сокращения межкадрового интервала PVV (Path Variability Value):

PVV 49 (9)

Указанные значения являются экспериментальными и получены для различных физических сред стандарта Ethernet.

Общее значение PDV равно сумме всех значений PDVi на каждом участке, а значение PDVi равно сумме задержек, вносимой i- базой сегмента и задержкой, вносимой кабелем:

PDV = PDVi , где PDVi = ti базы + ti кабеля (10)

В свою очередь

ti кабеля = L i x bt i (11)

Аналогичным образом сокращение межкадрового интервала равно:

PVV = PVVi (12)

причем в расчет не включается правый сегмент. В таблице 2 приведены значения затуханий, для расчета PDV вносимые элементами сети в битовых интервалах bt. Интервалы bt приведены в таблице уже умноженные на 2, т.к. высчитывается двойное время оборота сигнала (по определению PDV)

Таблица 2

Тип сегмента

База левого сегмента, bt

База промежуточного

сегмента, bt

База правого

сегмента, bt

Задержка среды на 1 м

10Base-5

11,8

46,5

169,5

0,0866

10Base-2

11,8

46,5

169,5

0,1026

10base-T

15,3

42,0

165,0

0,113

10Base-F

12,3

33,5

156,5

0,1

В таблице 3 приведены значения затуханий, для расчета PDV

Таблица 3

Тип сегмента

Левый сегмент, bt

Промежуточный сегмент,bt

10Base-5

16

11

10Base-2

16

11

10base-T

10,5

8

10Base-F

10,5

8

В таблицах используются понятия левый сегмент, правый сегмент и промежуточный сегмент. Кроме затуханий, вносимых физическими линиями связи, подключенные к концентраторам , сегменты вносят собственные задержки, называемые базами.

Пример:

Рассчитаем сеть, представленную на рис. 3. Передающий компьютер находится в левом сегменте. Сигнал проходит через промежуточные сегменты и доходит до принимающего компьютера, который находится в правом сегменте. Количество компьютеров в каждом сегменте обеспечивает коэффициент загрузки S< 0,3.

Пусть физические среды и расстояние между концентраторами следующие

Участок между концентраторами

Физическая среда

Длина, м

Левый сегмент

10Base -T

90

1-2

10 Base -2

130

2-3

10Base-F

1000

3-4

10 Base -5

200

Правый сегмент

10Base -T

100

Решение

1) Проверка выполнения «правила 4-5 -3»

Сеть содержит 4 концентратора, 5 отрезков кабелей и 3 нагруженных сегмента (концентраторы 1,2,4). «Правило 4-5-3» выполняется

a) Расчет PDV

- левый сегмент PDV1 = 15,3 + 90 х 0,113 = 25,47

- промежуточный сегмент 1-2 PDV2 = 46,5 + 130 х 0,1026 = 59,84

- промежуточный сегмент 2-3 PDV3 = 33,5 + 1000 х 0,1= 133,50

- промежуточный сегмент 3-4 PDV4 = 46,5 + 200 х 0,0866 = 63,82

- правый сегмент PDV5 = 165 + 100 х 0,113 = 176,30

Таким образом, PDV сети равно:

PDV = 25,47 + 59,84+ 133,50+ 63,82 + 176,30 = 458,93 < 575

Значение рассчитанного PDV меньше допустимой величины. Это значит, что сеть является работоспособной по критерию времени двойного оборота сигнала.

б) расчет PVV

Из таблицы 2 выбираем:

- левый сегмент PVV1 = 10,5

- промежуточный сегмент 1-2 PVV2 = 11

- промежуточный сегмент 2-3 PVV3 = 8

- промежуточный сегмент 3-4 PVV4 = 11

В результате получим значение:

PVV = 10,5 + 11 + 8 + 11 = 40,5 < 49

Значение рассчитанного PVV меньше допустимой величины. Это значит, что сеть является работоспособной также и по критерию сокращение межкадрового интервала.

Отметим, что в случае не выполнения условий (8) , (9) необходимо менять конфигурацию сети или уменьшать длины соединительных кабелей и их типы.

При использовании в сети вместо концентраторов специальных устройств коммутаторов общие PDV и PVV сети не суммируется по всем участкам (из- за того, что коммутаторы физически разделяют сеть), а условия (8), (9) проверяется по каждому участку.

Лекция 4. Базовые технологии канального уровня (ч. 2)

1. Технология Fast Ethernet

Классический, т.е. 10 - мегабитный Ethernet в начале 90 -х годов перестал удовлетворять пользователей по своей пропускной способности. Особенно остро эта проблема встала перед сетевым сообществом, когда клиентские приложения стали требовать скоростей недоступных для сетевых адаптеров базовой технологии Ethernet.

Пользователи с большим энтузиазмом восприняли сообщения, появившиеся в 1992 году о начале работ по разработке высокоскоростного Ethernet'а, обещавшие им продление жизни привычной и недорогой технологии. Однако вскоре сетевой мир разделился на два соперничающих лагеря, что и привело в конце концов к появлению двух различных технологий - Fas tEthernet и100G-AnyLAN. Сторонники первого подхода считали, что новая технология должна в максимальной степени быть похожа во всем на Ethernet - за исключением только битовой скорости передачи данных.

Сторонники второго подхода призывали воспользоваться удобным случаем для устранения недостатков, связанных со слишком "случайным" механизмом предоставления доступа к разделяемой среде CSMA/CD, используемым в Ethernet

В 1995 году комитет IEEE принял спецификацию Fast Ethernet в качестве нового стандарта. Сетевой мир получил технологию, с одной стороны решающую самую болезненную проблему - нехватку пропускной способности на канальном уровне сети, а с другой стороны очень легко внедряющуюся в существующие сети Ethernet, которые и сегодня дают миру около 80% всех сетевых соединений.

У технологии Fast Ethernet формат кадра остался прежним при этом, однако, длина битового интервала уменьшилась в десять раз и стала равной bt= 0,01 мкс. В результате все временные параметры, определенные для технологии Ethernet, уменьшились в десять раз, а пропускная способность соответственно увеличилась также в десять раз и стала равной 100 Мбит/ с. Учитывая, что на пропускную способность сети влияют длины физических линий связи, то отличия FastEthernet от Ethernet сосредоточены в основном на физическом уровне. Для обеспечения требуемой пропускной способности рекомендуется в основном использовать неэкранированную витую пару и волоконно- оптический кабель.

При создании сегментов FastEthernet максимальный диаметр сети колеблется от 136 до 205 метров, а количество концентраторов в сегменте ограничено одним или двумя, в зависимости от типа концентратора. При использовании двух концентраторов расстояние между ними не может превышать 5 - 10 метров.

Наличие многих общих черт у технологий Fast Ethernet и Ethernet дает простую общую рекомендацию использования новой технологии: Fast Ethernet следует применять в тех организациях и в тех частях сетей, где до этого широко применялся 10 Мегабитный Ethernet, но сегодняшние условия или же ближайшие перспективы требуют в этих частях сетей более высокой пропускной способности. При этом сохраняется весь опыт обслуживающего персонала, привыкшего к особенностям и типичным неисправностям сетей Ethernet.

Основная область использования Fast Ethernet - это настольные компьютеры, сети рабочих групп и отделов, где компьютерам требуется пропускная способность выше 10 Мбит/c. Такими компьютерами чаще всего являются файловые серверы, но и современные клиентские компьютеры требуют такую же скорость.

2. Высокоскоростная технология Gigabit Ethernet

Основная идея разработчиков стандарта GigabitEthernet состоит в максимальном сохранении идей классической технологии Ethernet при достижении битовой скорости в 1000 Мб/с. В 1999 году спецификация Gigabit Ethernet была принята комитетом IEEE.

В связи с ограничениями, накладываемыми методом CSMA/CD на длину кабеля, версия Gigabit Ethernet для разделяемой среды допускала бы длину сегмента всего в 25 метров. Так как существует большое количество применений, когда нужно повысить диаметр сегмента хотя бы до 100 метров, то сейчас разработчиками предпринимаются усилия по увеличению длины сегмента с одновременным сохранением высокой скорости передачи. Все усилия в основном сосредоточены на разработке высококачественных линий связи.

В общем случае рассмотренные выше технологии Ethernet позволяют организовать сеть с иерархией скоростей: персональные компьютеры подключаются к коммутаторам сегментов со скоростью 10 Мбит/с, эти коммутаторы связываются с центральными коммутаторами по технологии Fast Ethernet, а те в свою очередь связываются между собой по Gigabit Ethernet.

3. Технология 100VG-AnyLAN

В качестве альтернативы технологии Fast Ethernet фирмы AT&T и HP выдвинули проект новой недорогой технологии со скоростью передачи данных 100 Мб/с - 100Base-VG (VoiceGrade - технология, способная работать на кабеле, предназначенном первоначально для передачи голоса).

В 1995 года технология 100VG-AnyLAN получила статус стандарта IEEE. В технологии 100VG-AnyLAN определен новый метод доступа Demand Priority с двумя уровнями приоритетов - для обычных приложений и для мультимедийных

Метод доступа Demand Priority основан на передаче концентратору функций арбитра, решающего проблему доступа к разделяемой среде. Концентратор отличается от обычных повторителей за счет того, что он опрашивает адреса присоединенных к нему узлов и поэтому не передает принятый от узла кадр на все порты, а только на тот, на который нужно (Рис. 1). Концентратор узнает порт станции назначения с помощью специальной таблице адресов, которая создается во время подключения концентратора. Среда по-прежнему разделяемая, так как концентратор за один цикл опроса портов принимает в свой буфер только один кадр, не запоминая все предыдущие. Некоторые этапы работы с приема и передачи кадров совмещаются во времени, и за счет этого ускоряется передача кадров. Метод Demand Priority повышает коэффициент использования пропускной способности сети - до 95% по утверждению компании Hewlett-Packard.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.