на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Основы информатики
p align="left">Для представления в ЭВМ символьной информации (буквы, спецсимволы) используется код ASCII. В этом коде каждому символу ставиться в соответствие 8-битовое двоичное число. Таким образом, 1 байт является внутренним представлением символа в ЭВМ. При кодировании используется весовой принцип, в соответствии, с которым значение двоичного кода символа увеличивается в алфавитном порядке.

Алфавитно-цифровая информация представляется в виде полей переменной длины. Для символьной информации поле представляет собой последовательность байт, располагающихся в памяти по соседним адресам, наз. строкой.

В ЭВМ 3-го поколения длина поля 1256 байт. В современных ЭВМ для 32 битовых МП поля могут содержать последовательность бит, байт слов, двойных слов и учетверенных слов. Такие последовательности называются цепочками.

Длина цепочек байт, слов, двойных и учетверенных слов 14 Гбайт.

8. Параметры и классификация ЗУ

Под памятью ЭВМ понимают совокупность устройств, предназначенных для хранения, приема и выдачи двоичной информации. Отдельное устройство из этой совокупности называют ЗУ.

Операции, выполняемые в ЗУ - занесение инф. (запись), выборка инф. (считывание). Операции записи и считывания - операции обращения к памяти.

Основные параметры ЗУ:

-ёмкость,

-удельная ёмкость,

-быстродействие,

Ёмкость - это максимальное количество инф., которую может хранить ЗУ.

Удельная ёмкость - это отношение ёмкости к физическому объему ЗУ.

Быстродействие - определяется временем обращения к памяти. Различают время обращения при записи и время обращения при считывании.

tдоступа определяется как интервал времени между началом обращения к памяти и моментом, когда требуемая инф. становится доступной.

tзаписи, tсчитывания - время, требуемое для записи и считывания инф.

Структура памяти ЭВМ:

Производительность и вычислительные возможности ЭВМ во многом определяются составом и параметрами ЗУ, образующими память ЗУ.

По способу доступа ЗУ делятся:

ЗУ прямого доступа - время доступа не зависит от местоположения инф. в памяти ЭВМ.

ЗУ циклического доступа - доступ к инф. становится возможным через периодически повт. интервалы времени.

ЗУ последовательного доступа - для доступа к любому элементу инф. предварительно осущ. просмотр предшевств. ему элементов инф.

В зависимости от способа хранения и поиска инф. в памяти ЭВМ различают адресные, ассоциативные и стековые ЗУ.

Адресные ЗУ - поиск требуемой инф. осущ. по адресу ячейки, хранящей инф. Для этого каждый байт имеет свой адрес.

Ассоциативные ЗУ - поиск инф. осущ. не по адресу, а по содержимому ячейки памяти (ассоциативный признак).

Стековые ЗУ - также имеют безадресную организацию. Доступ к инф. в них осущ. через опр. ячейку памяти, назыв. вершиной стека.

9. Адресная память

Адресные ЗУ - поиск требуемой инф. осущ. по адресу ячейки, хранящей инф. Для этого каждый байт имеет свой адрес.

Стр - ра адресного ЗУ имеет вид:

В состав ЗУ входят:

ЗМ - запоминающий массив, состоящий из N n - разрядных ячеек памяти.

БАВ - блок адресной выборки, реализуется на дешифраторах и предназначен для формирования сигнала выборки, активирующего одну из ячеек ЗМ.

РГА - регистр адреса, предназначенный для хранения k - разрядного адреса, пост. по шине адреса ША.

УСС - усилитель считывания.

УСЗ - усилитель записи.

РГИ - предназначен для временного хранения инф., зап. в ЗУ или счит из ЗУ.

Шивх - шина инф. входная.

Шивых - шина инф. выходная.

БУП - блок управления памяти, вырабатывает сигналы, упр. записью и считыв. инф. из ЗУ.

Работа адресного ЗУ.

Процессор, выполняя очередную команду, извлекает из нее адрес операнда и выставляет на шину адреса. В ЗУ возможны две операции - запись и считывание.

Перед каждой из этих операций процессор вырабатывает сигнал обращения по которому БУП выр. сигнал прием регистра адреса - ПрРГА, по кот. адрес, выст. проц. на ША записывается в РГА.

Адрес из РГА поступает в БАВ, который вырабатывает сигнал выборки ячейки памяти из ЗМ. Эта ячейка переходит в состояние, когда к ней возможен доступ.

После того, как ячейка выбрана, проц. вырабатывает сигнал операции, которая может быть либо запись, либо считывание. Если это считывание БУП выр. сигнал считывания, кот. пост. на УСС, открывает усилители и обеспечивает передачу инф. из выбранной ячейки памяти на вход РГИ. После чего с некоторой задержкой БУП выр. сигнал прием РГИ - ПрРГИ. По сигналу РГИ счит. из ЗМ инф. записывается в РГИ и появляется на шине выхода. При операции запись БУП выр. сигнал прием вх. инф. шины, по которому данные, нах, на ШИ вх заносятся в РГИ и поступает на вход усилителя записи, после чего инф заносится в выбранную ячейку памяти.

10.Организация адресного пространства ЭВМ. Выравнивание данных в памяти

Наиболее широкое распространение в ЭВМ получили адресные ЗУ. Адресные ЗУ - поиск требуемой инф. осущ. по адресу ячейки, хранящей инф. Для этого каждый байт имеет свой адрес.

С точки зрения процессора массив таких ЗУ состоит из элементарных ячеек длиной в один байт, каждая из которых имеет свой номер (адрес).

Совокупность таких ячеек образует адресное пространство , максимальный адрес определяется разрядностью шины адреса. При адресации в адресном рпостранстве ячеек памяти, имеющих длину более одного байта мкпроцессор Intel в качестве адреса ячейки исп. миним. адрес байта, входящего в состав ячейки.

При размещении числовых значений в ячейках адресного пространства мл. разряды числа размещаются в байте с минимальным адресом.

Выравнивание данных в памяти.

Адрес можно представить А = А31А30…А1А0, Аi = {0,1}.

Если ячейка памяти имеет длину более одного байта, то возникают вопросы, связанные с размещением ячеек памяти в ЭВМ.

Б3 Б2 Б1 Б0

При адресации такой ячейки памяти в качестве адреса можно выбрать старшие биты адреса А2-А31, а младшие биты адреса А1-А0 исп. для адресации байта внутри ячейки памяти, тогда адресом будет А=А31А30….А3А200.

Тогда адреса остальных байт в пределах ячейки будут:

Б0=А1А0=00; Б1=А1А0=01; Б2=А1А0=10; Б3=А1А0=11.

В принципе, размещение инф. в памяти может быть произвольным и в случае ячеек памяти длиной более одного байта возможны ситуации, когда для считывания дв. слова из памяти потребуется обращение по двум адресам А' и А'+1, т.е. потребуется два цикла обращения к памяти. Поэтому при программировании рекомендуется выравнивать данные в памяти.

Для выравнивания данных в памяти ЭВМ в случае, если эти данные явл. словами, адреса должны быть четными двойными словами - кратными 4.

В общем случае, если данные в ячейке занимают 2k байт, адреса, по которым размещаются такие данные должны быть кратными 2k.

Практически это означает, что адрес такой ячейки памяти должен содержать k нулей в мл. битах А = А31А30…Аk-100000…, Аi = {0,1}.

11. Ассоциативная память

Являются безадресными. Поиск инф. в запоминающем массиве таких ЗУ осущ. не по адресу, а по содержанию - ассоциативному признаку. Исп. код ассоц. признака.

Для того, чтобы при поиске инф. в ассоц. ЗУ анализировать не все биты хранящихся в таких ячейках слов, а лишь выбранные биты слова исп. код маски.В этом бите 1 указаны в тех битах, где инф. будет исп. при ассоц. поиске и 0 в тех битах, кот. не исп. Структура ассоц. ЗУ:

РгАП - регистр ассоц. признака, исп. для его врем. хранения.

РгМ - регистр маски.

ЗМ - запоминающий массив.

РгИ - исп. для времен. хранения инф. в качестве буфера при записи и считыв. из ЗУ.

КС - комбинационная схема, обесп. сравнение ячеек ЗМ, РгАП, РгМ.

РгС - регистр совпадений. Разрядность этого регистра равна кол-ву ячеек памяти ЗМ. Номер любого бита РгС совпадает с номером ячейки памяти ЗМ.

РС - схема формирования р-та ассоц. признака. Он формируется в виде кода i ={0,1}, 0 1 2. Если код равен 100, то в ЗУ отсутствуют ячейки памяти, удовлетв. ассоц. признаку. Если 010-есть только одна ячейка, 001 - более одной ячейки.

Есть доп. разряд , кот. исп. для указания занятости ячейки. 0 -не занята, 1 - занята.

При считывании инф. в РгАМ и РгМ предварительно заносятся коды АП и маски.

Содержимое РгАП и РгМ совместно с содержимым ячеек ЗМ поступает на входы КС, где формируется N - разрядный код, записываемый в РгС. 1 в этом коде стоятв тех битах, номера к-рых совпадают с номерами ячеек ЗМ, для к-рых имело место совпадение по АП.

ФС использует код, поступающий из РгС, формирует рез-т ассоц. поиска 0 1 2. Если оказывается, что 0=1, то считывание отменяется. Если 1=1, то содержимое ячейки памяти переносится в РгИ и выставляется на шину инф. выходную.

При записи инф. предварительно осущ. поиск свободных ячеек памяти, для этого в РгАП загружается код 111…1110 - бит занятости. В РгМ загружается 000…0001. Осущ. ассоц. поиска в р-те которого определяется наличие ячеек ЗМ. если 1=1, то инф. , предварит. занесенная в РгИ с Шивх, переносится в свободную ячейку памяти и ее служебный бит уст. в 1. Если есть несколько свободных ячеек, то инф. заносится в свободную ячейку с наименьшим номером. Особенностью ассоц. ЗУ явл. возможность совместить поиск инф. и ее обработку.

12. Стековая память

Стековые ЗУ являются безадресными. ЗМ этих ЗУ состоит из ячеек памяти, связанных между собой разрядными линиями. Это позволяет сдвигать информацию из одной ячейки памяти в другую. Доступ к информации в стековых ЗУ осуществляется через ячейку ЗМ, называемую вершиной стека.

При записи информации, поступающей по Шивх, она заносится в вершину стека. При этом информация, записанная ранее, сдвигается вглубь стека.

При считывании информации информация поступает на Шивых из вершины стека. В том случае, если считывание информации происходит без разрушения, информация, занесенная в вершину стека, теряется, а содержимое соседних ячеек памяти перемещается в ячейки с меньшими номерами.

Стековые ЗУ снабжаются счетчиком стека СчСт, в к-ом хранится код, указывающий заполнение стека. Если стек не заполнен - 0, если заполнен - N-1.

13. Динамические ЗУ со структурой 2D

ЗМ строятся из запоминающих элементов, способных хранить один бит информации. Каждый такой элемент имеет входы, сигналы на которых обеспечивают выборку элемента при обращении к памяти. Эти входы подключаются к адресным линиям. Каждый ЗЭ имеет входы, через которые осуществляется запись информации и выходы, через которые информация считывается. Эти выходы и входы подключаются к так называемым разрядным линиям. Совокупность адресных и разрядных линий называется линиями выборки. В зависимости от количества адресных и разрядных линий ЗМ памяти может иметь двухмерную, трехмерную или промежуточную структуру. Если ЗМ организован в виде двухмерной структуры, то она называется 2D, 3D, 2,5D соответственно.

Наиболее широко в ЗУ используется 2D и 3D. В современных ЭВМ в качестве элементов ЗМ используется схемы на полупроводниковых транзисторах.

В ЗМ со структурой 2D представляет собой плоскую матрицу, строки которой образуются разрядными, а столбцы адресными линиями (см.рис.).

В соответствии с кодом адреса, поступившим на дешифратор, формируется сигнал выборки ячейки в ЗМ.

Считывание информации осуществляется по разрядным линиям через усилители считывания УсСч, запись - по разрядным линиям через УсЗ. Управление записью и считыванием осуществляется с помощью сигналов запись и считывание.

В современных ЭВМ используются ЗЭ, которые допускают объединение входных и выходных разрядных линий. Такие структуры называются структурными 2D-M.

14. Запоминающий элемент динамических ЗУ (схема, работа)

В качестве ЗЭ используются схемы на МОП транзисторах, хранение информации, в которых осуществляется за счет заряда конденсатора. Если конденсатор заряжен в ЗЭ записана единица, и наоборот.

Для работы таких ЗУ требуется периодическая подзарядки конденсаторов, иначе информация будет потеряна. По этой причине ЗУ такого типа называются динамическими, а память DRAM. Процесс восстановления информации в DRAM осуществляется путем разряда конденсатора, при этом содержимое строки ЗМ записывается в буфер, реализованных на статических триггерах, из которого считанная информация передается на выходную информационную шину. После считывания содержимое буфера вновь переписывается в строку ЗМ, из которой оно было выбрано.

Схема запоминающего элемента в DRAM показана на рис. :

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.