на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Система математических расчетов MATLAB
p align="left">

Можно видеть, что значения E*c не совсем точно совпадают со значениями эксперименталь-ных данных y, но эти отклонения могут быть сравнимы с ошибками измерений.

Прямоугольная матрица A называется матрицей неполного ранга, если ее столбцы линейно-независимы. Если матрица A имеет неполный ранг, то решение AX = B не является единст-венным. Оператор \ при этом выдает предупреждающее сообщение и определяет основное решение, которое дает минимально возможное число ненулевых решений.

Недоопределенные системы

Недоопределенные системы линейных уравнений содержат больше неизвестных чем урав-нений. Когда они сопровождаются дополнительными ограничениями, то становятся сферой изучения линейного программирования. Сам по себе, оператор \ работает только с системой без ограничений. При этом решение никогда не бывает единственным. MATLAB находит ос-новное решение, которое содержит по меньшей мере m ненулевых компонент (где m - число уравнений), но даже это решение может быть не единственным. Ниже приводится пример, где исходные данные генерируются случайным образом.

R = fix (10*rand(2,4))

R =

6 8 7 3

3 5 4 1

b = fix (10*rand(2,1))

b =

1

2

Система уравнений Rx = b содержит два уравнения с четырьмя неизвестными. Поскольку матрица коэффициентов R содержит небольшие по величине целые числа, целесообразно представить решение в формате rational (в виде отношения двух целых чисел). Частное ре-шение представленное в указанном формате есть:

p = R\b

p =

0

5/7

0

-11/7

Одно из ненулевых решений есть p(2), потому что второй столбец матрицы R имеет наи-большую норму. Вторая ненулевая компонента есть p(4) поскольку четвертый столбец матрицы R становится доминирующим после исключение второго столбца (решение нахо-дится методом QR-факторизации с выбором опорного столбца).

Обратные матрицы и детерминанты

Если матрица А является квадратной и невырожденной, уравнения AX = I и XA = I имеют одинаковое решение X. Это решение называется матрицей обратной к A, обозначается через A-1 и вычисляется при помощи функции inv. Понятие детерминанта (определителя) матрицы полезно при теоретических выкладках и некоторых типах символьных вычислений, но его масштабирование и неизбежные ошибки округления делают его не столь привлекательным при числовых вычислениях. Тем не менее, если это требуется, функция det вычисляет определитель квадратной матрицы. Например,

A = pascal (3)

A =

1 1 1

1 2 3

1 3 6

d = det (A)

X = inv (A)

d =

1

X =

3 -3 1

-3 5 -2

1 -2 1

Опять таки, поскольку A является симметричной матрицей целых чисел и имеет единичный определитель, то же самое справедливо и для обратной матрицы. С другой стороны, для

B = magic(3)

B =

8 1 6

3 5 7

4 9 2

d = det(B)

X = inv(B)

d =

-360

X =

0.1472 -0.1444 0.0639

-0.0611 0.0222 0.1056

-0.0194 0.1889 -0.1028

Внимательное изучение элементов матрицы X, или использование формата rational , показы-вает, что они являются целыми числами, разделенными на 360.

Если матрица A является квадратной и несингулярной, то, пренебрегая ошибками округле-ния, выражение X = inv(A)*B теоретически означает то же, что и X = A\B , а Y = B*inv(A) теоретически есть то же, что и Y = B/A. Однако вычисления включающие операторы \ и / более предпочтительны, поскольку требуют меньше рабочего времени, меньшей памяти и имеют лучшие свойства с точки зрения определения ошибок.

Псевдообратные матрицы

Прямоугольные матрицы не имеют детерминантов и обратных матриц. Для таких матриц по крайней мере одно из уравнений AX = I или XA = I не имеет решения. Частично данный про-бел восполняется так называемой псевдообратной матрицей Мура-Пенроуза, или просто псевдообратной матрицей, которая вычисляется при помощи функции pinv. На практике необходимость в этой операции встречается довольно редко. Желающие могут всегда обра-титься к соответствующим справочным пособиям.

Степени матриц и матричные экспоненты

Положительные целые степени

Если А есть некоторая квадратная матрица, а р - положительное целое число, то A^p эквива-лентно умножению A на себя р раз.

X = A^2

X =

3 6 10

6 14 25

10 25 46

Отрицательные и дробные степени

Если А является квадратной и невырожденной, то A^(-p) эквивалентно умножению inv(A) на себя p раз.

Y = B^(-3)

Y =

0.0053 -0.0068 0.0018

-0.0034 0.0001 0.0036

-0.0016 0.0070 -0.0051

Дробные степени, например A^(2/3), также допускаются; результаты при этом зависят от ра-спределения собственных значений матрицы А.

Поэлементное возведение в степень

Оператор .^ (с точкой !) осуществляет поэлементное возведение в степень. Например,

X = A.^2

A =

1 1 1

1 4 9

1 9 36

Вычисление корня квадратного из матрицы и матричной экспоненты

Для невырожденных квадратных матриц А функция sqrtm вычисляет главное значение квад-ратного корня , т.е. если X = sqrtm(A) , то X*X = A . Буква m в sqrtm означает, что выпол-няется матричная операция. Это отличает данную функцию от sqrt(A), которая, подобно A.^(1/2) (обратите внимание на точку !), выполняет операцию извленчения корня поэлемен-тно.

Система обыкновенных линейных дифференциальных уравнений первого порядка может быть записана в виде

dx/dt = Ax

где x = x(t) есть векторная функция от t, а A есть постоянная матрица не зависящая от t.

Решение данной системы может быть выражено в виде матричной экспоненты.

x(t) = ?Atx(0)

Функция expm(A) вычисляет матричную экспоненту. Рассмотрим пример системы диффере-нциальных уравнений со следующей 3х3 матрицей коэффициентов

A =

0 -6 -1

6 2 -16

-5 20 -10

и начальными условиями x(0)

x0 = [ 1 1 1]'.

Использование матричной экспоненты для вычисления решения дифференциального уравне-ния в 101 точке с шагом 0.01 на интервале 0 ? t ? 1 записывается в виде

X = [ ];

for t = 0 : 0.01 : 1

X = [X expm(t*A)*x0];

end

Трехмерный график решения в фазовом пространстве может быть получен при помощи спе-циальной функции

plot3(X(1,:), X(2,:), X(3,:), '-o')

Решение имеет вид спиральной функции сходящейся к началу координат (см. рис. ниже). Та-кое решение обусловлено комплексными собственными значениями матрицы коэффициен-тов А.

Собственные значения и собственные векторы

Собственным значением и собственным вектором квадратной матрицы А называются ска-ляр л и вектор v, удовлетворяющие условию

Av = лv

Диагональная декомпозиция

Имея диагональную матрицу Л, составленную из собственных значений л матрицы А и мат-рицу V , составленную из соответствующих собственных векторов v, можно записать

AV = VЛ

Если матрица V несингулярная, на основании данного выражения получаем спектральное разложение матрицы А

А = VЛV-1

Неплохой пример использования спектрального разложения дает рассмотренная выше мат-рица коэффициентов линейного дифференциального уравнения. Ввод выражения

lambda = eig(A)

дает следующий вектор-столбец собственных значений (два из них являются комплексно-сопряженными)

lambda =

-3.0710

-2.4645 + 17.6008i

-2.4645 - 17.6008i

Действительные части всех собственных значения являются отрицательными, что обеспечи-вает устойчивость процессов в системе. Ненулевые мнимые части комплексно-сопряженных собственных значений обуславливают колебательный характер переходных процессов.

При двух выходных аргументах, функция eig вычисляет также собственные векторы и выда-ет собственные значения в виде диагональной матрицы

.

[V,D] = eig(A)

V =

-0.8326 0.2003 - 0.1394i 0.2003 + 0.1394i

-0.3553 -0.2110 - 0.6447i -0.2110 + 0.6447i

-0.4248 -0.6930 -0.6930

D =

-3.0710 0 0

0 -2.4645+17.6008i 0

0 0 -2.4645-17.6008i

Первый собственный вектор (первый столбец матрицы V) является действительным, а два других являются комплексно-сопряженными. Все три вектора являются нормализованными по длине, т.е. их Евклидова норма norm(v,2), равна единице.

Матрица V*D*inv(V), которая в более сжатой форме может быть записана как V*D/V, равна, в пределах погрешностей округления, матрице А. Аналогично, inv(V)*A*V, или V\A*V, рав-на, в пределах погрешностей округления, матрице D.

Дефектные матрицы

Некоторые матрицы не имеют спектрального разложения. Такие матрицы называются дефек-тными или не диагонализируемыми. Например, пусть матрица А имеет вид

A =

6 12 19

-9 -20 -33

4 9 15

Для этой матрицы ввод [V, D] = eig(A) дает

V =

-0.4741 -0.4082 -0.4082

0.8127 0.8165 0.8165

-0.3386 -0.4082 -0.4082

D =

-1.0000 0 0

0 1.0000 0

0 0 1.0000

Здесь имеются два положительных единичных кратных собственных значений. Второй и третий столбцы матрицы V являются одинаковыми и поэтому полного набора линейно-неза-висимых собственных векторов не существует (и поэтому не существует обратная матрица V-1).

Сингулярное разложение матриц

Сингулярным значением и соответствующими сингулярными векторами прямоугольной ма-трицы A называются скаляр у и пара векторов u и v такие, что удовлетворяются соотноше-ния

Av = уu

ATu = уv

Имея диагональную матрицу сингулярных чисел У и две ортогональные матрицы U и V, сформированные из соответствующих собственных векторов, можно записать

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.