на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Биокерамика на основе фосфатов кальция
p align="left">Ситуация становится более сложной при использовании полифракций гранул. Модель укладки бифракционных гранул предложена в [240]. Показано, что содержание открытых пор в укладке зависит от соотношения содержания и размеров гранул во фракциях. При свободной укладке сферических гранул с соотношением диаметров >5:1 интервал значений открытой пористости составляет от 12,5 до 35 об.%.

Приложение давления при формовании монодисперсных укладок гранул влияет на пористость. На рис. 51 и рис. 52 показана зависимость открытой пористости спеченных образцов от давления прессования и их микроструктура. Снижение пористости с увеличением давления обусловлено как деформацией сырых гранул, так и уплотнением их упаковки.

На рис. 53 приведена зависимость прочности при растяжении спеченных образцов от содержания открытых пор. Прочность резко снижается с увеличением пористости. Обычно для описания зависимости прочности от пористости используют соотношением Рышкевича: ? = ?0 exp (-qР) (64), где ?0 - прочность материала без пор, q = 7-8, либо показательную зависимость ? = ?0(1 - Р)m (65), где m = 3-10 для керамических материалов [241,242]. Оценки по этим соотношениям показывают, что при содержании пор примерно 30 об.% прочность снижается в 8-12 раз по сравнению с прочностью материала без пор. Это указывает на непротиворечивость сделанных оценок прочности, учитывая экспериментальные данные по прочности при растяжении гидроксиапатитовой керамики [21].

Таким образом, разработан способ изготовления керамики, содержащей тонкие внутригранульные и относительно крупные взаимопроникающие межгранульные поры, основанный на изготовлении и спекании заготовок из сферических гранул ГА/биополимер. Очевидным недостатком таких матриксов является низкая их прочность, менее 1 МПа при растяжении при пористости около 60%.

Совместно с МНИОИ им П.А. Герцена проведены их испытания in vitro на модели фибробластов человека и in vivo на животных, изготовлены композиты керамический матрикс - мезенхимальные стволовые клетки, которые имплантированы животным (крысам) для изучения регенерации костной ткани in vivo на модели дефекта теменной кости крысы. В результате проведенных исследований установлена высокая биосовместимость и биоактивность ГА- матриксов; доказана регенерация костной ткани животных при имплантировании матриксов с культивированными в них мезенхимальными стволовыми клетками, отмечена упорядоченность и интегрированность структур в области закрытия дефекта при использовании разработанных биокомпозитов.

Было выполнено исследование (совестно с Университетом Мио, Япония) по степени иммобилизации антибиотиков в пористые керамические матриксы [243]. Материалы пропитывали тремя различными антибиотиками: изепамицин сульфат (isepamicin sulphate) - аминоглюкосидный антибиотик, ванкомицин гидрохлорид (vancomycin hydrochloride) - глюкопептидный антибиотик и фломоксеф натрия (flomoxef sodium) - цепемовый (cephem) антибиотик. Минимальная необходимая концентрация для подавления активности стафилококка составляет 0,4 мкг/мл для изепамицина или 0,2 мкг/мл - для цепемового антибиотика.

Матриксы помещали в емкость миксера, заполненную растворами антибиотиков концентрации 100 мг/мл. С помощью форвакуумного насоса в емкости создавали разрежение 500 мм рт. ст. и выдерживали образцы в течение 10 мин. Для оценки степени иммобилизации рассчитывали отношение разности масс образцов после и до пропитки к массе исходных образцов.

Установлено, что степень иммобилизации антибиотиков возрастает с повышением пористости образцов. Максимально достигнутая степень пропитки составила 46?5 % по массе. Степень пропитки показана на диаграмме рис. 54. Экспериментами in vitro доказана пролонгированность до 40 суток фармокинетики выделения лекарственных препаратов из матриксов, что может быть использовано в терапии остеомиелитов. Исследованиями in vivo продемонстрирована превосходная биоактивность матриксов при имплантировании в берцовую кость кроликов (рис. 55).

Для регулирования биологического поведения пористой керамики, поверхность пор может быть покрыта слоем трехкальциевого фосфата. Для этой цели исходные заготовки керамики пропитывают раствором двузамещенного фосфата аммония с последующей термообработкой при температуре 900 0С [244].

Большое значение для процесса остеоинтеграции имеет форма пор. В работе [21] было отмечена возможность получения методом выгорающих добавок канальных пор цилиндрической формы диаметром до 500 мкм и длиной более 5 мм.

Пористая керамика может быть получена при физиологической температуре, минуя стадию спекания [28]. Прочность такого материала может рассматриваться как некоторый нижний ее предел. Процесс получения материала моделирует формирование ГА в организме, в условиях in vivo. Исследовали образцы кальций-дефицитного гидроксиапатита (КДГА) и карбонат замещенного гидроксиапатита (КА), полученных в соответствие со следующими реакциями:

6СаНРО4 + 3Са4(РО4)2О = 2Са9НРО4(РО4)5ОН + Н2О (66)

(5/8)NaHCO3 + 2CaHPO4 + 2Ca4(PO4)2O

= 1,067Ca9,375Na0,586(PO4)5,375(CO3)0,586(OH)1,961 +5/16(H2O) (67)

Синтезированный порошок прессовали под давлением 70 МПа и выдерживали во влажной среде при 38 0С. Объемное содержание пор в материалах было 27-39 %. Получены следующие средние значения прочности материалов: при растяжении - 12-18 МПа для КДГА и 9-14 МПа для КА; при сжатии - 83-172 для КДГА и 57-80 для КА. Различие свойств материалов объяснено особенностями формирования их микроструктуры при физиологических температурах. Уровень прочности высок, несмотря на значительное содержание пор, форма и концентрация которых существенно влияют на механические свойства [241].

Пористая керамика, хотя и обладает достаточной прочностью на сжатие (2-100 МПа), но имеет предел прочности при изгибе 2-11 МПа, что в два-три раза меньше необходимых значений, причем, с увеличением пористости прочность материала резко снижается (рис. 56) [21]. В работах [245-247] исследовано влияние пористости на прочность при сжатии и модуль Юнга спеченной при 1100 0С керамики на основе ГА и ТКФ. Установлено, что прочность и модуль Е снижаются с увеличением содержания пор Р, согласно соотношениям ln = 6,4 - 3,9P для ГА и ln = 6,6 - 6,2P для ТКФ, и ln Е = 4,6 - 4,0P для ГА. Экстраполированные значения прочности и модуля упругости при нулевой пористости равны, соответственно, 70 МПа и 9,2 ГПа - для ГА, и 135 МПа и 21 ГПа - для ТКФ. Приведенные значения прочности ГА существенно ниже, чем данные из других источников.

Прочность постепенно увеличивается, когда кость прорастает во внутрь сети пор имплантанта. По данным [51], прочность при изгибе для пористого имплантанта, заполненного на 50-60 % костной тканью, составляет 40-60 МПа.

Зависимость трещиностойкости ГА керамики от размера зерна немонотонная, имеется максимум, соответствующий размеру зерна керамики около 0,4 мкм [248]. Максимальное значение прочности и трещиностойкости керамики, спеченной с введением Na3PO4, составляют, соответственно, 135 МПа и 1,25 МПам1/2. Добавка фосфата натрия приводит к росту зерна и снижению трещиностойкости до 0,95 МПам1/2.

Пористую керамику с улучшенными прочностными свойствами можно изготовить с применением волокон. Волокнистый пористый материал, как известно, показывает повышенную прочность благодаря сцеплению (соединению) волокон, изменению траектории трещин и вытягивания волокон. Кроме того, волоконный ГА каркас может быть укреплён ГА - полимерным биодеградирующим костным веществом. Существует много работ по изготовлению волокнистой, пористой кальций-фосфатной керамики. Волокнистая пористая структура может быть приготовлена несколькими способами [21,249-250]:

- спекание ?-ТКФ волокон, с последующим преобразованием в пористый каркас ГА путём обработки в расплавах солей;

- спекание нитевидных кристаллов ГА или преобразование ?-ТКФ при гидротермальных условиях;

- динамическое уплотнение ОКФ и ?-кальций метафосфатных волокон.

К сожалению, механические свойства не достигают требуемого уровня в любом случае.

4.3 Композиционные материалы

Применение ГА керамики в качестве материала для имплантатов, несущих механические нагрузки, часто невозможно из-за недостаточности прочностных характеристик и трещиностойкости. Поскольку естественная костная ткань является композиционным материалом, состоящим из ГА, коллагена и других белков, то значительные перспективы для повышения механических свойств ГА-керамики, предназначенной для изготовления костных имплантатов, имеет принцип формирования композиционных структур. Введением соответствующих добавок в керамику можно улучшить механические характеристики, но при этом должны сохраняться ее биологические свойства и, в первую очередь, биосовместимость с тканью живого организма.

Композиционные материалы содержащие ГА могут быть подразделены на две основные группы [181]:

· Керамика, армированная дисперсными частицами, дискретными и непрерывными волокнами [251-254];

· Наполненные дисперсными частицами керамики биосовместимые полимеры [255-263].

Для упрочнения оксидных керамик в них вводят дисперсные частицы частично стабилизированного диоксида циркония (ZrO2 (Y2O3)), претерпевающего полиморфное превращение из тетрагональной в моноклинную модификацию под действием механических напряжений. В работах [251,252] изучали взаимодействие ГА с ZrO2 и определяли прочность на изгиб и тещиностойкость при различном соотношении ГА и ZrO2 (Y2O3). Было установлено, что прочность на изгиб и трещиностойкость возрастают с увеличением количества ZrO2. Материалы, содержащие 50 % ZrO2 и обожженные при 1400 0С, показали значения прочности на изгиб, в два-три раза превышающие прочность ГА без добавок. Однако использование диоксида циркония для упрочнения ГА керамики, как показано, ограничено из-за стабилизации диоксида циркония кальцием из ГА при температуре спекания [251]. Возможности армирования ГА-матрицы неорганическими волокнами, например Al2O3 или SiC, также лимитированы рассогласованием коэффициентов термического расширения матрицы и волокна, приводящего к образованию растягивающих напряжений в матрице, которые снижают прочность. В [181] показана возможность повышения прочности в 2 раза и трещиностойкости в 6 раз горячепрессованной ГА-керамики в результате ее армирования дискретными металлическими волокнами (нержавеющая сталь, сплав хастеллой), вводимыми в керамическую матрицу в количестве до 20 об.%. Полученные композиционные материалы имеют прочность до 224 МПа, трещиностойкость 6,0-7,4 МПаm1/2 и модуль нормальной упругости до 142 ГПа. Однако, для керамико-металлических имплантатов характерна коррозия и негативные реакции с тканями.

Один из наиболее интересных подходов для повышения прочности и уменьшения хрупкости ГА керамики - изготовление композитов ГА - полимер.

В работах [256,261] разработаны композиционные материалы на основе полиэтилена. С увеличением содержания до 40% ГА в композите модуль Юнга увеличивается, и находится на уровне 1-8 ГПа, что близко к таковому у естественной кости. Однако полиэтилен является биоинертным материалом и уменьшает способность срастания имплантата с костной тканью.

Известны работы [255,264-266], направленные на изучение композитов ГА - коллаген, которые по составу схожи с естественной костью. Композиты могут быть изготовлены посредством смешивания порошка ГА с раствором коллагена и последующим затвердеванием смеси под УФ - излучением или прессованием смеси ГА-коллаген при температуре 40 0С и давлении 200 МПа. Однако полученные материалы имеют низкие прочностные характеристики, например прочность при растяжении равна 6,5 МПа, а модуль Юнга 2 ГПа. Биомиметический подход к получению композитов ГА-коллаген основан на осаждении кристаллов ГА из растворов СБФ (simulated body fluids), повторяющих состав межтканевой жидкости, на волокна коллагена. При этом получается пористый материал с энергией разрушения 510 Дж/м2 [21]. Прочностные свойства большинства композитов ГА-коллаген неудовлетворительны. В то же время эти материал показывают более высокую биоактивность, нежели гидроксиапатит и коллаген в раздельности. Используя коллаген, можно создавать материалы с контролируемой резорбируемостью. Коллаген (желатин) часто используют как материал - носитель лекарственных средств пролонгированного действия [21].

Возможен также альтернативный подход, основанный на введении полимера в керамическую матрицу. Это позволило бы создать материалы с непрерывным керамическим каркасом. Механические свойства таких керамико-полимерных материалов в значительной степени должны отличаться от свойств полимерно-керамических материалов.

В работах [267-268] приведены результаты по формированию микроструктуры композиционных материалов ГА-полимер при вакуумной пропитке керамики водными растворами некоторых полимеров и механическим свойствам композитов. Способ приготовления основан на инфильтрации раствора полимера (желатин и поливиниловый спирт (ПВС)) в пористую керамическую матрицу с последующей сушкой композиции.

В качестве исходных материалов использовали тонкодисперсный порошок ГА с соотношением Ca/P = 1,67, удельной поверхностью по БЕТ 5,5 м2/г и размером агломератов менее 1 мкм, полученный осаждением аммиаком из водных растворов двузамещенного фосфата аммония и хлорида кальция. В работе также использовали следующие материалы: желатин марки П-11, ГОСТ 11293-89 (Могилёвский желатиновый завод, Белоруссия) - биополимер, продукт денатурации коллагена-белка соединительной ткани; ПВС (Лаверна, Россия) - синтетический полимер, продукт взаимодействия поливинилацетата с метиловым спиртом.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.