на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Исследование твердых электролитов
p align="left">-- хорошо пропускать ионы Na +, но быть непроницаемой для ионов Cl - и OH -- быть химически стабильной в высокоагрессивной среде (щелочной раствор хлорида натрия 6 моль/л при температуре 80-95&ddeg;С) в течение длительного времени;-- иметь высокую электрическую проводимость; -- быть механически прочной.

Эти требования были выполнены в полной мере только после появления мембран "Nafion", установки, на основе которых занимают в настоящее время, лидирующее положение в области хлорно-щелочного электролиза.

3.5 Кислородно-водородные генераторы и топливные элементы

Появление фторуглеродных катионообменных мембран произвело настоящую революцию в таких областях, как электролиз воды для получения водорода и кислорода и преобразование химической энергии в электрическую с помощью топливных элементов. Обе области науки и техники взаимосвязаны и являются необходимыми компонентами так называемой водородной энергетики. Суть последней состоит в преимущественном использовании водорода как экологически чистого и экономически выгодного энергоносителя. Действительно, водород может быть получен с помощью электролиза воды -- принципиально экологически чистого процесса. Наиболее выгодно делать это в периоды наименьшей внешней загрузки электростанций. Далее, по существующим подсчётам, транспортировка водорода по системе трубопроводов обойдётся в пять раз дешевле передачи электрической энергии по высоковольтным линиям. У конечного потребителя водород может быть использован непосредственно как экологически чистый химический реагент (топливо, восстановитель) или для получения электрической энергии в топливных элементах. Использование водорода как энергоносителя поможет, таким образом, уменьшить расход углеводородного топлива и приведёт к уменьшению выбросов углекислого газа в атмосферу. Однако для реального внедрения концепции водородной энергетики необходимо решить несколько проблем, одной из которых является повышение эффективности электрохимического получения водорода и обратного преобразования химической энергии в электрическую. Как было отмечено, большую роль здесь сыграло появление мембраны "Nafion", которая в рассматриваемых системах является не только ион-селективной диафрагмой, но и действительно твёрдым полимерным электролитом. Принцип работы твёрдополимерного электролизёра может быть пояснён с помощью рис. 4.

Рис.4. Схема твёрдополимерного электрохимического генератора водорода и кислорода.

Дистиллированная вода подаётся в анодное пространство электролизёра и проникает через поры анода (пластина из пористого титана) к границе раздела электрод/ТПЭ. На этой границе происходит электроокисление воды с выделением кислорода: 2H2O + 4e - > O2 + 4H +

Кислород удаляется из реакционной зоны через поры электрода, газонепроницаемость ТПЭ препятствует проникновению его в катодное пространство и образованию взрывоопасной гремучей смеси. По описанному выше механизму гидратированные протоны движутся через мембрану к катоду, где происходит их восстановление с выделением газообразного водорода: 2H + + 2e > H2

Подобно кислороду, водород удаляют через систему пор катода и каналы токоподвода. Протекание катодной и анодной реакций стимулируется введением на границы раздела электроды/ТПЭ катализаторов -- мелкодисперсных платины и оксида иридия (IV) соответственно, причём разработанные к настоящему времени технологии позволяют уменьшить количества применяемых благородных металлов до 0,1 мг в расчёте на квадратный сантиметр поверхности электрода. Некоторые количественные характеристики твёрдополимерных электролизеров, демонстрирующие их эффективность, таковы:

-- напряжение на электродах 1,6-1,8 В при номинальной плотности тока 1 А на квадратный сантиметр геометрической поверхности электродов; -- толщина ТПЭ 0,2-0,5 мм, толщина всей электролизной ячейки не превышает нескольких миллиметров;

-- практически стопроцентная чистота выделяющихся газов, что позволяет применять их как чистые химические реагенты и в медицинских целях (кислород).

Очевидно, что как с экологической точки зрения, так и с точки зрения экономической эффективности электролизёры с ТПЭ не идут ни в какое сравнение с генераторами водорода и кислорода, использующими в качестве электролитов жидкие растворы щелочей. Уже то обстоятельство, что работают твёрдополимерные электролизёры на дистиллированной воде (причём, чем чище вода, тем больше срок службы ТПЭ), говорит об их экологической чистоте. И последний пример: электролизёр размером со спичечную коробку в течение последних 10 лет без всякой замены электродов или ТПЭ обеспечивает все потребности кафедры, на которой работает автор этой статьи, в кислороде и водороде для препаративных работ. Разумеется, этим примером не исчерпываются области применения твёрдополимерных генераторов кислорода и водорода. Их успешно используют в течение последнего десятилетия в медицине. Они вытеснили тяжёлые и пожароопасные кислородные баллоны, нашли широкое применение в промышленности (водород используют в качестве восстановителя, оба газа -- в сварочных аппаратах), в энергетике и даже бытовых условиях -- для повышения концентрации кислорода в воздухе помещений, что необходимо для лёгочных больных, заполнения кислородных подушек и т. д.. Готовыми к широкому применению (экономичными, безопасными, необслуживаемыми), водород-кислородные электролизёры сделало именно использование твёрдых полимерных электролитов.

Конструкция водород-кислородных топливных элементов с ТПЭ принципиально не отличается от схемы электролизёра. Топливом здесь служат газообразные водород и кислород, реакции на электродах протекают в обратном направлении по сравнению с реакциями при электролизе, продуктами же являются дистиллированная вода и электрическая энергия. Существуют лишь различия в составе каталитических слоёв на границах раздела электроды/ТПЭ и конструкции электродов. Однако КПД топливных элементов с ТПЭ, известных к настоящему времени, не превышает 50%, а напряжение составляет лишь 0,8 В. Это вызвано в первую очередь низкой эффективностью протекания реакции электровосстановления кислорода при сравнительно низких температурах (80-90°С) функционирования данных устройств. Серьёзным препятствием на пути широкого распространения топливных элементов является также высокая цена получаемой с их помощью электроэнергии -- от 3 до 8 тыс. долларов за 1 кВт. Тем не менее, топливные элементы с ТПЭ вследствие своих уникальных качеств (безопасности, экологической чистоты и компактности) нашли применение на подводных и космических кораблях, где их используют для получения пресной воды и электрической энергии.

3.6 Химическая модификация электродов с помощью ТПЭ

Суть химической модификации электродов, сравнительно нового направления электрохимии, можно пояснить на следующем примере. Предположим, что необходимо провести реакцию электрохимического восстановления вещества Ox: Ox + e - > Red. Однако данная реакция на известных электродных материалах (реальный выбор которых, кстати, невелик) протекает с низкой скоростью. Выход известен -- подбор катализатора, повышающего скорость реакции и иммобилизация его в реакционной зоне, то есть на границе раздела электрод/электролит. Собственно, одной из основных задач химической модификации электродных поверхностей и является организация эффективного протекания электрохимических процессов с помощью катализаторов, находящихся в модифицирующем слое.

Рис. 5. Схема химически модифицированного электрода с ТПЭ и внедрённым в него электроактивным веществом А.

Предположим далее, что такой катализатор найден -- некое вещество А (рис. 5). Нанесём слой ТПЭ на поверхность электрода и методом ионного обмена внедрим в него катализатор, заместив часть катионов натрия, находящихся в мембране. В этом случае реакция восстановления вещества Ox будет протекать не на поверхности электрода, а на границе раздела ТПЭ/раствор: Ox + A > Red + A +. Катализатор возвращается в исходную форму, восстанавливаясь на электроде: А + + е - > A. Однако для этого катион А + должен переместиться через слой полимера к электроду и, восстановившись, вернуться обратно к границе раздела полимер/раствор.

Механизм переноса заряженных частиц или просто заряда через слой полимера является ключевым вопросом, определяющим функционирование химически модифицированных электродов. Скорость переноса заряда часто определяет скорость электрохимических и каталитических процессов с участием ХМЭ, именно поэтому процессы переноса заряда в полимерах были и являются предметом многочисленных исследований.

В рассматриваемом примере катион А+ может достичь поверхности электрода по двум механизмам, первым из которых является физическая диффузия. Движущей силой диффузии является градиент концентрации А+ в ТПЭ в направлении, перпендикулярном поверхности электрода. Этот градиент возникает вследствие уменьшения концентрации А+ у поверхности электрода из-за электрохимического восстановления ЭАВ. Однако физическая диффузия практически всех катионов (за исключением H + и Na +) в ТПЭ "Nafion" протекает медленно, скорость движения резко падает с увеличением размера и заряда ионов. Скорость диффузии комплексных катионов в "Nafion" обычно характеризуется низкими коэффициентами диффузии в диапазоне 10-11 --10-13 см 2/с. Низкая скорость транспорта заряда делает малоэффективным и весь процесс на ХМЭ в целом.

Альтернативным механизмом, позволяющим А+ из глубины мембраны "достичь" поверхности электрода, является обмен электроном между близлежащими молекулами вещества А: A+ + А > А + A+. Восстановившись на электроде, ближайшая к нему молекула восстанавливает соседнюю и т. д. до границы раздела полимер/раствор. Разумеется, это возможно только в том случае, если расстояние между молекулами А в ТПЭ достаточно мало для переноса электрона, то есть концентрация А достаточно велика.

Относительный вклад переноса электрона (электронной проводимости) и диффузии в общий процесс переноса заряда в электрохимических системах, содержащих растворы электролитов, был рассмотрен Дамсом (H. Dahms) и Раффом (I. Ruff) в конце 70-х -- начале 80-х годов. Аналогичная теоретическая модель переноса заряда была несколько позднее развита и для ТПЭ. Скорость процесса переноса заряда в рамках рассматриваемой модели может быть выражена через коэффициент диффузии заряда Dct , состоящий из двух слагаемых:

Dct = D + kд 2 рCA/4,где D -- коэффициент реальной диффузии вещества А в полимере, k -- константа скорости процесса обмена электроном, л·моль -1 ·с -1,СА -- концентрация вещества А в полимере, д -- расстояние между редокс-центрами, на которое переносится электрон.

Относительный вклад обеих составляющих транспорта заряда можно показать на следующих примерах. Так, в растворах электролитов при СА = 0,1М, д = 10 -7 см, k = 10 9 см 3 ·моль -1 ·с -1 вклад электронного переноса составляет 8·10 -9 см 2 ·с -1. Эта величина значительно меньше коэффициентов физической диффузии веществ, обычно наблюдаемых в водных растворах ~10 -6 см 2 ·с -1. Иначе говоря, вклад электронного переноса в общий процесс переноса заряда в водных растворах незначителен. Дело обстоит иначе в ТПЭ, где физическая диффузия веществ, естественно, протекает с меньшей скоростью. Так, в системе, состоящей из комплекса [Ru(bipy)3] 2+ введённого в ТПЭ "Nafion", коэффициент диффузии заряда Dct, равный 4·10 -10 см 2 ·с -1, складывается из величин 0,3·10 -10 см 2 ·с -1 и 3,7·10 -10 см 2 ·с -1, отражающих соответственно физическое движение комплекса в полимере и электронный перенос заряда. Таким образом, в полимерных электродах для повышения эффективности протекающих на них процессов необходимо стремиться к организации наряду с диффузионным и электронного переноса заряженных частиц через полимер.

Перспективные области применения полимерных электродов весьма разнообразны:

-- электрохромные устройства -- системы, изменяющие свой цвет при изменении подаваемого на них электрического сигнала. Основой электрохромных устройств являются оптически прозрачные электроды (кварцевые пластины с прозрачным электропроводным слоем оксидов олова и индия). В ТПЭ, нанесённый на этот электрод, вводится электроактивное вещество, способное изменять свой цвет при электрохимическом окислении или восстановлении. Подобные устройства применяются, в частности, как оптические фильтры с регулируемой интенсивностью поглощения света; -- сенсорные устройства, работающие аналогично электрокаталитическим системам, принцип действия которых описан в этом разделе (см. рис. 5). Задача сенсорных устройств -- мониторинг окружающей сенсор среды, информирование о появлении в ней определённого вещества и его концентрации. Так, при появлении во внешней среде вещества Ox (см. рис. 5) концентрация вещества А в ТПЭ будет уменьшаться за счёт реакции с ним (разумеется, вещество А в этом случае должно быть подобрано так, чтобы быстро и селективно реагировать с Ox). Уменьшение концентрации А в ТПЭ приведёт к изменению потенциала ХМЭ или протекающего через него тока. К настоящему времени на основе полимерных электродов разработаны сенсоры, реагирующие на водород, сероводород, углекислый газ, кислород; -- модельные фотоэлектрохимические преобразователи, то есть устройства, преобразующие энергию света в электрическую за счёт протекания в них фотохимических и электрохимических реакций.

Заключение

Появившись сравнительно недавно, твёрдые полимерные электролиты уже послужили основой для создания новых электрохимических устройств, характеризующихся отсутствием жидкого агрессивного электролита, уменьшенными массогабаритными характеристиками, высокой степенью надёжности и экологической безопасности. Большое число исследований, ведущихся в области ТПЭ и химически модифицированных электродов научными группами всего мира, обещает получение в ближайшем будущем новых революционных результатов в энергетике, создание новых типов оптоэлектронных и логических компьютерных устройств, биомедицинских микросенсорных систем.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.