на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Теория симметрии молекул
p align="left">Бесконечная система векторов векторного пространства называется линейно независимой, если любая ее конечная подсистема линейно независима.

Определение 8. Векторное пространство V называется конечномерным, имеющим разность n, если в нем найдется n линейно независимых векторов, а любые n+1 векторов линейно зависимы. Если в векторном пространстве можно указать систему из n линейно независимых векторов для любого конечного числа n, то это пространство называется бесконечномерным.

Размерность пространства обозначается в виде dim V.

Определение 9. Базисом или базой, в n-мерном векторном пространстве V называется любая ее система из n линейно независимых векторов.

Если e1, e2, …, en - база пространства V и v=x1e1+x2e2+…+xnen, то числа x1, x2, …, xn определяются однозначно и называются координатами вектора v в базе e1, e2, …, en. Вектор v в этом случае можно записать в виде v=( x1, x2, …, xn).

2.2 Эвклидовы и унитарные пространства

1. Билинейные и квадратичные формы

Определение 1. Линейной функцией, или линейной формой, в векторном пространстве V над полем вещественных (комплексных) чисел Р называется отображение f векторного пространства V в поле Р, ставящее в соответствие каждому вектору вещественное (комплексное) число, если это отображение удовлетворяет следующим условиям:

1) f(x+y)=f(x)+f(y);

2) f(x)=f(x),

где x, y - произвольные векторы из пространства V, а P.

Если dimV=n, e1, e2, …, en - базис пространства V и x= x1e1+x2e2+…+xnen - произвольный вектор из этого пространства, то

f(x)=f(x1e1+x2e2+…+xnen)= x1f(e1)+x2f(e2)+…+xnf(en) или

f(x)= a1x1+a2x2+…+anxn, где ai=f(ei), i=1, 2, …, n.

Таким образом, при фиксированном базисе линейная функция представляется линейной формой (формой называется однородный многочлен).

Определение 2. Полулинейной формой или линейной функцией второго рода называется функция f, удовлетворяющая следующим условиям:

1) f(x+y)=f(x)+f(y)

2)

где - число, комплексно-сопряженное с .

Определение 3. Функция A(x, y) векторов x и y векторного пространства V над полем вещественных чисел называется билинейной функцией или билинейной формой, если при фиксированном x она является линейной функцией от y, а при фиксированном y - линейной функцией от x.

По аналогии с линейной функцией можно показать, что билинейная функция представляется билинейной формой, т. е. выражением вида

, где aik=A(ei, ek).

Поэтому билинейную функцию часто тоже называют билинейной формой.

Если A(x, y)=A(y, x) при любых x и y, билинейная форма A(x, y) называется симметрической.

Определение 4. Функция A(x, x), которая получена из симметрической билинейной формы, если наложить y=x, называется квадратичной формой.

Определение 5. Функция A(x, y) называется полуторалинейной формой векторов x и y комплексного пространства или билинейной формой в комплексном векторном пространстве, если при фиксированном y форма A(x, y) есть линейная форма от x, а при фиксированном x форма A(x, y) есть полученная форма от y.

В комплексном векторном пространстве полуторалинейную функцию можно представить в виде билинейной формы , где aik=A(ei, ek).

Определение 6. Билинейная форма в комплексном пространстве называется эрмитово-симметрической или эрмитовой, если A(x, y)= для всех векторов x и y из этого пространства.

Определение 7. Эрмитовой квадратичной формой называется функция, полученная из эрмитово-симметрической формы A(x, y), если положить в ней y=x. Так как A(x, x)=, то эрмитова квадратичная форма принимает только вещественные значения.

Определение 8. Квадратичной формой на пространстве V (вещественном или комплексном) называется такое отображение (Р - поле вещественных или комплексных чисел), для которого существует билинейная (полуторалинейная в случае Р=С) форма В(x, y) со свойством A(x)=B(x, x) для любого вектора xV.

2. Эвклидовы и унитарные пространства

Определение 9. Симметрическая билинейная форма A(x, y) на вещественном пространстве (эрмитово-симметрическая форма на комплексном пространстве) называется положительно определенной, если A(x, x)>0 для любого, отличного от нуля вектора x из рассматриваемого пространства.

Определение 9. Квадратичная форма (эрмитова квадратичная форма) называется положительно определенной, если для любого вектора x0 она принимает положительное значение.

Определение 10. n-мерным эвклидовым (унитарным) пространством называется n-мерное вещественное (комплексное) векторное пространство с положительно определенным симметрическим (эрмитовым) скалярным произведением.

Все вводимые далее понятия пригодны как для эвклидовых, так и для унитарных пространств.

Определение 11. База e1, e2, …, en эвклидова (унитарного) пространства называется ортогональной, если (ei, ej)=0, ij, i, j=1, 2, …, n, и ортонормированной, если она ортогональна и длина всех векторов равны единице.

3. Изометрия эвклидовых и унитарных пространств

Определение 12. Взаимно однозначное отображение f модуля М на модуль М над одним и тем же кольцом K называется изоморфизмом, если выполняются следующие условия:

1. f(x, y)=f(x)+f(y)=x+y; x=f(x); y=f(y);

x, yM;

2. f(x)=f(x)=x; xK; xM; x=f(x)M.

Определение 13. Два векторных пространства W и W над полем Р называются изоморфными, если они изморфны как модули над кольцом, которым является поле Р.

Пусть теперь даны два векторных пространства W и W со скалярными произведениями A(x, y) и A(x, y) над полем Р.

Определение 14. Изометрией векторных пространств W и W называется любой их изморфизм, который сохраняет значения всех скалярных произведений, т. е.

A(x, y)= A(f(x), f(y))= A(x, y); x, yW;

f(x)=x; f(y)=y.

В эвклидовом пространстве из определения длины вектора и угла между двумя векторами следует, что при изометрии сохраняются длины векторов и углы между ними, т. е. сохраняются метрические соотношения, чем и объясняется название «изометрия». В унитарном пространстве при изометрии сохраняются длины векторов, ортогональные векторы переходят в ортогональные векторы.

2.3 Матрицы

1. Линейные отображения, операторы и матрицы

Определение 1. Отображение f: VW векторного пространства V в векторное пространство W над полем Р называется линейное отображение, если для всех v, v1, v2V, P выполняются условия:

f(v1+v2)=f(v1)+f(v2);

f(v)=f(v).

Если V=W, то линейное отображение называется линейным оператором или линейным преобразованием пространства V.

Пусть e1, e2, …, en - базис пространства V, а e1, e2, …, en - базис пространства W. Образы базисных векторов пространства V в базисе пространства W можно записать в виде

(i=1, 2, …, m) (1)

Коэффициенты в выражении (1) запишем в виде матрицы, которая называется матрицей линейного отображения f.

.

В случае линейных операторов, т. е. линейных отображений векторного пространства в себя, операторы удобно обозначать , а матрицу оператора в фиксированном базисе - в виде А.

2. Унитарные, ортогональные, эрмитовы операторы и матрицы

Определение 2. Линейные операторы эвклидова (унитарного) пространства, которые сохраняют скалярное произведение векторов этого пространства, называется ортогональными (унитарными) операторами.

Пусть e1, e2, …, en - ортонормированная база унитарного (эвклидова) пространства. Если - унитарный (ортогональный) оператор, то согласно его определению

(ei, ej)= (ei, ei)=1, i=1, 2, …, n;

(ei, ej)= (ei, ej)=0, iy. (2)

Это означает, что система векторов e1, e2, …, en сама составляет ортонормированную базу в соответствующем пространстве.

Пусть А - матрица унитарного (ортогонального) оператора. Тогда можно записать . Из выражения (2) следует, что в матрице А скалярные произведения векторов-столбцов на себя равны единице, а скалярное произведение различных векторов-стобцов равно нулю. Такая матрица называется унитарной (ортогональной). Унитарность (ортогональность) матрицы А означает, что сумма произведений элементов, стоящих в любом столбце этой матрицы, на сопряженные (на те же самые) к ним элементы равны единице, а сумма произведений элементов любого столбца на сопряженные к ним (на соответственные к ним) элементы другого столбца равна нулю.

Определение 3. Матрица А* называется эрмитово сопряженной (или просто сопряженной) по отношению к матрице А, если А*=, т. е. для того, чтобы из матрицы А получить эрмитово сопряженную матрицу, ее надо транспонировать и заменить элементы транспонированной матрицы комплексно-сопряженными элементами.

Определение 4. Матрица А называется самосопряженной или эрмитовой матрицей, если A=A*; в том же случае, если элементы матрицы вещественны, A*=At=A и матрица А называется симметрической матрицей.

Определение 5. Матрица А называется унитарной (ортогональной) матрицей, если A*=A-1 (если At=A-1). Операторы, соответствующие эрмитовым матрицам, будем называть эрмитовыми.

2.4 Представления групп

1. Определение представлений

Определение 1. Представлением группы, действующим в n-мерном векторном пространстве V, называется гомоморфизм этой группы в группу невырожденных линейных операторов пространства V.

Невырожденным называется такой оператор , который имеет обратный оператор , дающий по определению в произведении с единичный оператор : ==.

Определение 2. Матричным представлением группы G называется гомоморфизм этой группы в группу невырожденных комплексных или действительных матриц размера nn.

Определение 3. Подстановочным представлением группы G называется гомоморфизм этой группы в группу подстановок порядка n. Если гомоморфизм группы G в группу операторов, матриц или подстановок является изморфизмом, то он называется точным представлением.

Представление группы будем обозначать буквой Т. Пусть g1 и g2 - любые элементы группы G, а Т(g1) и Т(g2) - соответствующие этим элементам матрицы представления. Тогда согласно определению гомоморфизма группы

Т(g1, g2)= Т(g1) Т(g2). (4)

Определение 4. Два матричных представления Т1 и Т2 группы G в некоторую группу матриц называется эквивалентным, если существует невырожденная матрица такая, что для всех матриц Т1(g), Т2(g) представления будет иметь место равенство

Т2(g)=Ф-1 Т1(g)Ф, gG (5)

Эквивалентные представления не различаются.

2. Приводимые и неприводимые представления

Воспользуемся языком линейных операторов. Пусть дано некоторое представление Т группы G, действующее в векторном пространстве V. Каждому вектору vV оператор (g) сопоставляет вектор (v)=v1 этого же пространства. Пусть W - подпространство пространства V.

Определение 5. Подпространство W пространства V называется инвариантным подпространством действия , если, каковы бы ни были элементы gG и векторы wW, T(w)=w1, где w1W.

Определение 6. Представление T группы G, действующее в векторном пространстве V над полем Р, называется приводимым представлением, если в этом пространстве существуют неприводимые инвариантные относительно этого действия подпространства. Представление Т называется неприводимым, если единственные его инвариантные подпространства - О и само пространство V.

Интерпретируем это определение на языке матриц. Пусть представление Т группы G приводимо. Значит, в пространстве V представления может быть найдено нетривиальное инвариантное подпространство W. Пусть e1, e2, …, ek - базис пространства W. Дополним его до базиса е1, е2, …, еk, ek+1, …, en всего пространства V. Так как W инвариантно, то (еi), где i=1, 2, …, k лежат в W. Поэтому

(еi)=a1ie1+a2ie2+…+akiek, i=1, 2, …, k.

Но так как эти векторы лежат и в пространстве V, то можно также написать

(еi)=a1ie1+a2ie2+…+akiek+0ek+1+…+0en, i=1, 2, …, k.

Что же касается отдельных базисных векторов ek+1, ek+2, …, en, то, поскольку они не принадлежат W, их образы выражаются через базис наиболее общим способом и получаем следующую картину:

(е1)=a11e1+a21e2+…+ak1ek+0ek+1+…+0en

(е2)=a12e1+a22e2+…+ak2ek+0ek+1+…+0en

(еk)=a1ke1+a2ke2+…+akkek+0ek+1+…+0en

(еk+1)=a1,k+1e1+a2,k+1e2+…+ak,k+1ek+ ak+1,k+1ek+1+…+an,k+1en

(еn)=a1ne1+a2ne2+…+aknek+ ak+1,nek+1+…+annen.

Отсюда видно, что матрицы всех элементов группы G в предствлении Т будут одновременно иметь следующий вид:

(6)

Поэтому на языке матриц матричное представление называется приводимым, если все матрицы его могут быть записаны при определенном выборе базиса в виде (6). Если же ни при каком выборе базиса матрицы представления нельзя записать в указанном виде, представления называются неприводимыми.

Страницы: 1, 2, 3, 4, 5, 6



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.